Skip to main content

Protective Mechanisms and Susceptibility to Xenobiotic Exposure and Load

  • Chapter
  • First Online:
Integrative and Functional Medical Nutrition Therapy
  • 2615 Accesses

Abstract

Contemporary humans typically get regular exposure to more than 100,000 industrial chemicals, most of which are not well-understood toxicologically. Evolutionary mechanisms, including xenobiotic-sensing nuclear receptors that influence expression of genes controlling the various biotransformation phases, have evolved to cope with exposure to both endogenous and exogenous xenobiotics. However, xenobiotic load and diversity have changed dramatically as a result of industrialization and globalization, and there is growing evidence that a significant burden of chronic diseases is now mediated, at least in part, by environmental chemicals. This chapter considers this background, along with the emerging science of biotransformation, and the pathophysiology of major chronic diseases associated with xenobiotics, including those mediated by the dysregulation of nuclear xenobiotic receptors such as pregnane X receptor (PXR), constitutive androstane receptor (CARs), hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR), and estrogen receptors (ERs). Direct or inferred associations between specific xenobiotic compounds and interacting genes are revealed by analysis of the Comparative Toxicogenomics Database (CTD), in addition to a summary of the latest International Agency for Research on Cancer (IARC) monographs identifying recognized or probable human carcinogens. This chapter includes advice for clinicians aiming to identify their patients’ exposure to xenobiotics, prior to reducing total/net exposure or load, and modifying dietary and lifestyle approaches with a view to enhancing biotransformation and elimination of xenobiotic metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Chemical Society media release: CAS Assigns the 100 Millionth CAS Registry Number® to a Substance Designed to Treat Acute Myeloid Leukemia. June 29th, 2015. [http://www.cas.org/news/media-releases/100-millionth-substance; Last accessed 04/17/17].

  2. Nielsen KA, Elling B, Gigueroa M, Jelsøe E, editors. A new agenda for sustainability. Farnham: Ashgate Publishing Ltd; 2010. p. 303.

    Google Scholar 

  3. Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol. 2010;196:369–405.

    Article  CAS  Google Scholar 

  4. García Rodríguez LA, Barreales Tolosa L. Risk of upper gastrointestinal complications among users of traditional NSAIDs and COXIBs in the general population. Gastroenterology. 2007;132(2):498–506.

    Article  CAS  PubMed  Google Scholar 

  5. Boelsterli UA, Redinbo MR, Saitta KS. Multiple NSAID-induced hits injure the small intestine: underlying mechanisms and novel strategies. Toxicol Sci. 2013;131(2):654–67.

    Article  CAS  PubMed  Google Scholar 

  6. Gee P, Maron DM, Ames BN. Detection and classification of mutagens: a set of base-specific Salmonella tester strains. Proc Natl Acad Sci U S A. 1994;91(24):11606–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. United Nations Economic Commission for Europe (2015). Globally Harmonized System of classification and labelling of chemicals (GHS) (Revision 6). United Nations, New York & Geneva. 521 pp.

    Google Scholar 

  8. Schuler MA, Berenbaum MR. Structure and function of cytochrome P450S in insect adaptation to natural and synthetic toxins: insights gained from molecular modeling. J Chem Ecol. 2013;39(9):1232–45.

    Article  CAS  PubMed  Google Scholar 

  9. Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol. 2006;15:615–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee WC, Fisher M, Davis K, Arbuckle TE, Sinha SK. Identification of chemical mixtures to which Canadian pregnant women are exposed: the MIREC Study. Environ Int. 2017;99:321–30.

    Article  CAS  PubMed  Google Scholar 

  11. Kodama S, Negishi M. PXR cross-talks with internal and external signals in physiological and pathophysiological responses. Drug Metab Rev. 2013;45(3):300–10.

    Article  CAS  PubMed  Google Scholar 

  12. Lund BO, Bergman A, Brandt I. Metabolic activation and toxicity of a DDT-metabolite, 3-methylsulfonyl-DDE, in the adrenal zona fasciculata in mice. Chem Biol Interact. 1988;65(1):25–40.

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez FJ, Gelboin HV. Role of human cytochromes P450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev. 1994;26(1–2):165–83. Review.

    Article  CAS  PubMed  Google Scholar 

  14. Hodgson E, editor. Toxicology and human environments. New York: Academic Press; 2012. p. 450.

    Google Scholar 

  15. Caira MR, Ionescu C, editors. Drug metabolism: current concepts. Netherlands: Springer; 2005. p. 422.

    Google Scholar 

  16. Petzinger E, Burckhardt G, Tampé R. The multi-faceted world of transporters. Naunyn Schmied Arch Pharmacol. 2006;372:383–4.

    Article  CAS  Google Scholar 

  17. Döring B, Petzinger E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev. 2014;46(3):261–82.

    Article  PubMed  Google Scholar 

  18. Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):103–16. Review.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.

    Article  CAS  PubMed  Google Scholar 

  20. Conney AH, Kappas A. Interindividual differences in the metabolism of xenobiotics. Carcinog Compr Surv. 1985;10:147–66.

    CAS  PubMed  Google Scholar 

  21. Yang CS, Brady JF, Hong JY. Dietary effects on cytochromes P450, xenobiotic metabolism, and toxicity. FASEB J. 1992;6(2):737–44.

    Article  CAS  PubMed  Google Scholar 

  22. Gonzalez FJ, Ueno T, Umeno M, Song BJ, Veech RL, Gelboin HV. Microsomal ethanol oxidizing system: transcriptional and posttranscriptional regulation of cytochrome P450, CYP2E1. Alcohol Alcohol Suppl. 1991;1:97–101.

    CAS  PubMed  Google Scholar 

  23. Kraner JC, Lasker JM, Corcoran GB, Ray SD, Raucy JL. Induction of P4502E1 by acetone in isolated rabbit hepatocytes. Role of increased protein and mRNA synthesis. Biochem Pharmacol. 1993;45(7):1483–92.

    Article  CAS  PubMed  Google Scholar 

  24. Ganey PE, Roth RA. Concurrent inflammation as a determinant of susceptibility to toxicity from xenobiotic agents. Toxicology. 2001;169(3):195–208. Review.

    Article  CAS  PubMed  Google Scholar 

  25. National Research Council. Multiple chemical sensitivities: addendum to biologic markers in immunotoxicology. Washington DC: National Academy Press; 1992. p. 200.

    Google Scholar 

  26. Evans RM, Martin OV, Faust M, Kortenkamp A. Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals? Sci Total Environ. 2016;543(Pt A):757–64.

    Article  CAS  PubMed  Google Scholar 

  27. Alam G, Jones BC. Toxicogenetics: in search of host susceptibility to environmental toxicants. Front Genet. 2014;5:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith JR, Smith JG. Effects of methylmercury in vitro on methionine synthase activity in various rat tissues. Bull Environ Contam Toxicol. 1990;45(5):649–54.

    Article  CAS  PubMed  Google Scholar 

  29. Rowland AS, Baird DD, Weinberg CR, Shore DL, Shy CM, Wilcox AJ. Reduced fertility among women employed as dental assistants exposed to high levels of nitrous oxide. N Engl J Med. 1992;327(14):993–7.

    Article  CAS  PubMed  Google Scholar 

  30. Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–8006.

    Article  CAS  Google Scholar 

  31. Chen Z, Shentu TP, Wen L, Johnson DA, Shyy JY. Regulation of SIRT1 by oxidative stress-responsive miRNAs and a systematic approach to identify its role in the endothelium. Antioxid Redox Signal. 2013;19(13):1522–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Henkler F, Brinkmann J, Luch A. The role of oxidative stress in carcinogenesis induced by metals and xenobiotics. Cancers (Basel). 2010;2(2):376–96.

    Article  CAS  Google Scholar 

  33. Li H, Wang H. Activation of xenobiotic receptors: driving into the nucleus. Expert Opin Drug Metab Toxicol. 2010;6(4):409–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banerjee M, Robbins D, Chen T. Targeting xenobiotic receptors PXR and CAR in human diseases. Drug Disc Today. 2015;20(5):618–28.

    Article  CAS  Google Scholar 

  35. Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci. 2012;33(10):552–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. FEBS Lett. 2008;582(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hernandez JP, Mota LC, Baldwin WS. Activation of CAR and PXR by dietary, environmental and occupational chemicals alters drug metabolism, intermediary metabolism, and cell proliferation. Curr Pharmacogenomics Person Med. 2009;7(2):81–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol. 2011;24(1):6–19.

    Article  CAS  PubMed  Google Scholar 

  39. Brent GA. Mechanisms of thyroid hormone action. J Clin Investig. 2012;122(9):3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boyce WT. Biology and context: symphonic causation and the distribution of childhood morbidities (Chapter 5). In: Keating DP, editor. Nature and nurture in early child development: Cambridge University Press; 2011. p. 114–44.

    Google Scholar 

  41. Ferber D. Lashed by critics, WHO’s cancer agency begins a new regime. Science. 2003;301(5629):36–7.

    Article  CAS  PubMed  Google Scholar 

  42. NTP (National Toxicology Program). 2016. Report on Carcinogens, Fourteenth Edition.; Research Triangle Park: U.S. Department of Health and Human Services, Public Health Service. [http://ntp.niehs.nih.gov/go/roc14].

  43. Prasad S, Sung B, Aggarwal BB. Age-associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med. 2012;54(Suppl):S29–37.

    Article  CAS  PubMed  Google Scholar 

  44. Lu K, Mahbub R, Fox JG. Xenobiotics: interaction with the intestinal microflora. ILAR J. 2015;56(2):218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:494.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vlčková K, Gomez A, Petrželková KJ, Whittier CA, Todd AF, Yeoman CJ, Nelson KE, Wilson BA, Stumpf RM, Modrý D, White BA, Leigh SR. Effect of antibiotic treatment on the gastrointestinal microbiome of free-ranging Western Lowland Gorillas (Gorilla g. gorilla). Microb Ecol. 2016;72(4):943–54.

    Article  CAS  PubMed  Google Scholar 

  47. Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C, Goossens H, Desager KN, Vankerckhoven V. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut. 2017;222:1–9.

    Article  CAS  PubMed  Google Scholar 

  49. Droździk M, Białecka M, Myśliwiec K, Honczarenko K, Stankiewicz J, Sych Z. Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics. 2003;13(5):259–63.

    Article  PubMed  Google Scholar 

  50. O’Donoghue JL. Neurologic manifestations of organic chemicals. In: Johnston MV, Adams HP, Fatemi SA, editors. Neurobiology of disease. 2nd ed: Oxford University Press; 2016.

    Google Scholar 

  51. Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease. Epidemiology. 2010;21(1):87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gu X, Manautou JE. Molecular mechanisms underlying chemical liver injury. Expert Rev Mol Med. 2012;14:e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clapp RW, Jacobs MM, Loechler EL. Environmental and occupational causes of cancer: new evidence 2005-2007. Rev Environ Health. 2008;23(1):1–37. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pereira CV, Moreira AC, Pereira SP, Machado NG, Carvalho FS, Sardão VA, Oliveira PJ. Investigating drug-induced mitochondrial toxicity: a biosensor to increase drug safety? Curr Drug Saf. 2009;4(1):34–54. Review.

    Article  CAS  PubMed  Google Scholar 

  55. Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci. 2015;145(1):5–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sharma KL, Agarwal A, Misra S, Kumar A, Kumar V, Mittal B. Association of genetic variants of xenobiotic and estrogen metabolism pathway (CYP1A1 and CYP1B1) with gallbladder cancer susceptibility. Tumour Biol. 2014;35(6):5431–9.

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Joshi AD, Corral R, Siegmund KD, Marchand LL, Martinez ME, Haile RW, Ahnen DJ, Sandler RS, Lance P, Stern MC. Carcinogen metabolism genes, red meat and poultry intake, and colorectal cancer risk. Int J Cancer. 2012;130(8):1898–907.

    Article  CAS  PubMed  Google Scholar 

  58. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295(10):1135–41.

    Article  CAS  PubMed  Google Scholar 

  59. Jiang O, Zhou R, Wu D, Liu Y, Wu W, Cheng N. CYP2E1 polymorphisms and colorectal cancer risk: a HuGE systematic review and meta-analysis. Tumour Biol. 2013;34(2):1215–24.

    Article  CAS  PubMed  Google Scholar 

  60. Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen. 2004;44(1):44–55.

    Article  CAS  PubMed  Google Scholar 

  61. Tahara T, Shibata T, Arisawa T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, Maruyama N, Kamano T, Kamiya Y, Fujita H, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I. Impact of catechol-O-methyltransferase (COMT) gene polymorphism on promoter methylation status in gastric mucosa. Anticancer Res. 2009;29(7):2857–61.

    CAS  PubMed  Google Scholar 

  62. Stover PJ. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J Nutrigenet Nutrigenomics. 2011;4(5):293–305.

    Article  CAS  PubMed  Google Scholar 

  63. Alizadeh S, Djafarian K, Moradi S, Shab-Bidar S. C667T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene and susceptibility to myocardial infarction: a systematic review and meta-analysis. Int J Cardiol. 2016;217:99–108.

    Article  PubMed  Google Scholar 

  64. Sabbagh A, Darlu P, Crouau-Roy B, Poloni ES. Arylamine N-Acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence: a worldwide population survey. PLoS One. 2011;6(4):e18507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bolt HM, Thier R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab. 2006;7(6):613–28.

    Article  CAS  PubMed  Google Scholar 

  66. Way MJ, Ali MA, McQuillin A, Morgan MY. Genetic variants in ALDH1B1 and alcohol dependence risk in a British and Irish population: a bioinformatic and genetic study. PLoS One. 2017;12(6):e0177009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O’Leary KA, Edwards RJ, Town MM, Boobis AR. Genetic and other sources of variation in the activity of serum paraoxonase/diazoxonase in humans: consequences for risk from exposure to diazinon. Pharmacogenet Genomics. 2005;15(1):51–60.

    Article  PubMed  Google Scholar 

  68. Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B. Paraoxonase 1 (PON1), agricultural organophosphate exposure, and Parkinson disease. Epidemiology. 2010;21(1):87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ji Y, Moon I, Zlatkovic J, Salavaggione OE, Thomae BA, Eckloff BW, Wieben ED, Schaid DJ, Weinshilboum RM. Human hydroxysteroid sulfotransferase SULT2B1 pharmacogenomics: gene sequence variation and functional genomics. J Pharmacol Exp Ther. 2007;322(2):529–40.

    Article  CAS  PubMed  Google Scholar 

  70. Hyman M. Systems biology, toxins, obesity, and functional medicine. Altern Ther Health Med. 2007;13(2):S134–9.

    PubMed  Google Scholar 

  71. Liska D, Lyon M, Jones DS. Detoxification and biotransformational imbalances. Explore (NY). 2006;2(2):122–40.

    Article  Google Scholar 

  72. Hodges RE, Minich DM. Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J Nutr Metab. 2015;2015:760689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Folate intake may be estimated using USDA Food Composition Database as a guide: [http://ndb.nal.usda.gov]. (Last accessed 18 April 2017).

  74. Tinetti ME, Fried TR, Boyd CM. Designing health care for the most common chronic condition--multimorbidity. JAMA. 2012;307(23):2493–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Verkerk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verkerk, R.H. (2020). Protective Mechanisms and Susceptibility to Xenobiotic Exposure and Load. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_13

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics