Skip to main content

Abstract

Respiration movement and respiration rate have been used to monitor breathing status for diagnosis and fitness purposes. From a given video sequence of a person facing a camera, this system here automatically detects and tracks a region of interest (ROI) on the chest, using the Kanade-Lucas-Tomasi method, after applying the Viola-Jones algorithm and identifying the Harris-Stephens features for tracking the ROI across frames. The displacement in the vertical direction of the ROI (frame by frame) was used to estimate the respiration movement, after low-pass filtering at a proper cutoff frequency. Finally, the respiration rate is estimated from the respiration movement signal by a root MUSIC-based estimator. For the 12 video files provided, we obtained respiration movement signals with correlation indexes respect to the corresponding ‘references’ of above 90%, in most cases, and respiration rate signals with normalized root mean-squared errors with respect to the inst_freq around 10%. A global ranking index of around 0.8 was consistently obtained. Computer vision algorithms are well-suited for estimating respiration movement and respiration rate signals from frontal video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: ECCV 2012, Part VI, LNCS 7577, p. 214 (2012). https://doi.org/10.1007/978-3-642-33783-3_16

    Chapter  Google Scholar 

  2. Bartula, M., Tigges, T., Muehlsteff, J.: Camera-based system for contactless monitoring of respiration. In: Proceedings of 2013 35th Annual International Conference on IEEE Engineering Medicine and Biology Society, pp. 2672–2675 (2013). https://doi.org/10.1109/embc.2013.6610090

  3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  4. Farneback, G.: Two-frame motion estimation based on polynomial expansion. In: Proceedings of 13th Scandinavian Conference on Image Analysis, Sweden (2003). https://doi.org/10.1007/3-540-45103-x_50

    Chapter  Google Scholar 

  5. Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–152 (1988). https://doi.org/10.5244/c.2.23

  6. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of IEEE International Conference on ICCV (2011). https://doi.org/10.1109/iccv.2011.6126542

  7. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence (1981)

    Google Scholar 

  8. Reyes, B.A., Reljin, N., Kong, Y., Nam, Y., Chon, K.H.: Tidal volume and instantaneous respiration rate estimation using a volumetric surrogate signal acquired via a smartphone camera. IEEE J. Biomed. Health Inform. 21(3), 764–777 (2017). https://doi.org/10.1109/jbhi.2016.2532876

    Article  Google Scholar 

  9. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: 9th European Conference on Computer Vision, vol. 1, pp. 430–443 (2006). https://doi.org/10.1007/11744023_34

    Chapter  Google Scholar 

  10. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994). https://doi.org/10.1109/cvpr.1994.323794

  11. Taboada-Crispi, A., Bazan-Prieto, C.A., Lorenzo-Ginori, J.V. et al.: Cancelador adaptativo de interferencias con mínima distorsión. Revista de Bioingeniería y Física Médica Cubana 4(2), 27–32 (2003)

    Google Scholar 

  12. Taboada-Crispi, A., Rivera-Cruz, L., Barber-Perez, M.: Algorithms to estimate the instantaneous frequency of a respiratory time-varying sequence. In: International Conference on Information Processing “CIPI 2019”, Cuba (2019)

    Google Scholar 

  13. Tomasi, C., Kanade, T.: Detection and Tracking of Point Features. Carnegie Mellon University Technical Report CMU-CS-91-132 (1991)

    Google Scholar 

  14. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2007). https://doi.org/10.1561/0600000017

    Article  Google Scholar 

  15. Vázquez-Segura, J.A., Mejía-Rodríguez, A.R., Reyes, B.A.: Estimación Óptica Remota de la Actividad y Frecuencia Respiratoria durante Diversas Maniobras Respiratorias. In Memorias del Congreso Nacional de Ingeniería Biomédica 5(1), 114–117, México (2018)

    Google Scholar 

  16. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: IEEE CVPR (2001). https://doi.org/10.1109/cvpr.2001.990517

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Taboada-Crispi .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reyes, M.E.P., Dorta_Palmero, J., Diaz, J.L., Aragon, E., Taboada-Crispi, A. (2020). Computer Vision-Based Estimation of Respiration Signals. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics