Skip to main content

Comparative Study of Biomechanical Model of the L4-L5 Lumbar Section with Mechanical Fixation

  • Conference paper
  • First Online:
VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering (CLAIB 2019)

Abstract

The risk of fixation loosening by the pedicle failure during or after the screw insertion surgery is high, causing fracture of the bone tissue due to the high stress concentration. The purpose of this paper is study the influence of osteoporosis on the bone-screw interface, based on a 3D biomechanical model of the lumbar section. The Finite Element (FE) method was used. Mechanical properties in health vertebra (HV) and osteoporotic vertebra (OV) were defined. A compression load of 500 N and a moment of 7.5 Nm were assumed in four load scenarios: compression, flexion, flexion-extension and axial rotation. The bone-screw interaction zone and the posterior of vertebra and pedicles were susceptible to bone tissue failure, because the higher equivalent stress were close to bone failure stress. The HV stresses were higher than OV stresses. The higher stress was 8.83 MPa. Opposite to stresses results, the strains were higher in OV than in HV, being the OV strain more than 2 times higher than HV strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morales Ávalos, R., Elizondo Omaña, R.E., Vílchez Cavazos, F., et al.: Fijación vertebral por vía transpedicular. Importancia de los estudios anatómicos y de imagen. Acta Ortop. Mex. 26(6), 402–411 (2012)

    Google Scholar 

  2. Lv, C., Li, X., Zhang, H., et al.: Comparative effectiveness of two different interbody fusion methods for transforaminal lumbar interbody fusion: cage versus morselized impacted bone grafts. BMC Musculoskelet Disord 16(207), 1–6 (2015). https://doi.org/10.1186/s12891-015-0675-2

    Article  Google Scholar 

  3. Xue, H.M., Tu, Y.H., Cai, M.W.: Comparison of unilateral versus bilateral instrumented transforaminal lumbar interbody fusion in degenerative lumbar diseases. Spine 12(2012), 209–215 (2012). https://doi.org/10.1016/j.spinee.2012.01.010

    Article  Google Scholar 

  4. Rao, P.J., Mobbs, R.J.: The, “TFP” fusion technique for posterior 360° lumbar fusion: a combination of open decompression, transforaminal lumbar interbody fusion, and facet fusion with percutaneous pedicle screw fixation. Orthop. Surg. 6(1), 54–59 (2014). https://doi.org/10.1111/os.12086

    Article  Google Scholar 

  5. Liu, J., Tang, J., Liu, H.: Comparison of one versus two cages in lumbar interbody fusion for degenerative lumbar spinal disease: a meta-analysis. Orthop. Surg. 6(3), 236–243 (2014). https://doi.org/10.1111/os.12119

    Article  Google Scholar 

  6. Cisneros Hidalgo, Y.A., González Carbonell, R.A., Ortiz Prado, A., et al.: Posibilidad de aplicación de la simulación computacional de tejido óseo en niños con torsión tibial. Rev. Cubana Ortop. Traumatol. 30(2), 193–200 (2016)

    Google Scholar 

  7. González Carbonell, R.A., Ortiz Prado, A., Jacobo Armendáriz, V.H., et al.: Consideraciones en la definición del modelo específico al paciente de la tibia. Rev. Cubana Inv. Bioméd. 34(2), 157–167 (2015)

    Google Scholar 

  8. Rohlmann, A., Nabil Boustani, H., Bergmann, G., et al.: Effect of a pedicle-screw-based motion preservation system on lumbar spine biomechanics: a probabilistic finite element study with subsequent sensitivity analysis. J. Biomech. 43(15), 2963–2969 (2010). https://doi.org/10.1016/j.jbiomech.2010.07.018

    Article  Google Scholar 

  9. Xu, G., Fu, X., Du, C., et al.: Biomechanical effects of vertebroplasty on thoracolumbar burst fracture with transpedicular fixation: a finite element model analysis. Orthop. Traumatol.: Surg. Res. 100(4), 379–383 (2014). https://doi.org/10.1016/j.otsr.2014.03.016

    Article  Google Scholar 

  10. Elmasry, S., Asfour, S., Travascio, F.: Implications of spine fixation on the adjacent lumbar levels for surgical treatment of thoracolumbar burst fractures: a finite element analysis. J. Spine Care 1(1), 1–5 (2016). https://doi.org/10.15761/JSC.1000105

    Article  Google Scholar 

  11. Ibarz, E., Herrera, A., Más, Y., et al.: Development and kinematic verification of a finite element model for the lumbar spine: application to disc degeneration. Biomed. Res. Int. 2013, 1–18 (2013). https://doi.org/10.1155/2013/705185

    Article  Google Scholar 

  12. Wagnac, E., Arnoux, P.J., Garo, A., et al.: Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med. Biol. Eng. Comput. (2012). https://doi.org/10.1007/s11517-012-0908-6

    Article  Google Scholar 

  13. Cheng, I., Arnold, P.M., Harris, J., et al.: Multilevel kinematic assessment of immediate and simulated long-term stabilization of novel inline cervical interbody devices with intervertebral screw, anchor, or blade fixation. Spine J. 17(10), S101 (2017). https://doi.org/10.1016/j.spinee.2017.07.083

    Article  Google Scholar 

  14. Wang, J., Zhou, B., Liu, X.S., et al.: Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 72(Suppl. C), 71–80 (2015). https://doi.org/10.1016/j.bone.2014.11.006

    Article  Google Scholar 

  15. Chen, Y., Ma, H.T., Liang, L., et al.: A simulation study on marrow fat effect on biomechanics of vertebra bone. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3921–3924. IEEE EMBS, Milán (2015). https://doi.org/10.1109/EMBC.2015.7319251

  16. Alkaly, R.N., Bader, D.L.: The effect of transpedicular screw design on its performance in vertebral bone under tensile loads: a parametric study. Clin. Spine Surg. 29(10), 433–440 (2016). https://doi.org/10.1097/BSD.0b013e3182a03c70

    Article  Google Scholar 

  17. González-Carbonell, R.A., Ortiz-Prado, A., Jacobo-Armendáriz, V.H., et al.: A CT-based and mechanobiologic model for the simulation of rotation of tibia deformities during patient’s immobilization treatment. In: Torres, I., Bustamante, J., Sierra, D.A. (eds.) VII Latin American Congress on Biomedical Engineering, CLAIB 2016, vol. 60, pp. 449–452. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_113

    Chapter  Google Scholar 

  18. González-Carbonell, R.A., Ortiz-Prado, A., Jacobo-Armendáriz, V.H., et al.: 3D patient-specific model of the tibia from CT for orthopedic use. J. Orthop. 12(1), 11–16 (2015). https://doi.org/10.1016/j.jor.2015.01.009

    Article  Google Scholar 

  19. Von Forell, G.A., Stephens, T.K., Samartzis, D., et al.: Low back pain: a biomechanical rationale based on “patterns” of disc degeneration. Spine (Phila Pa 1976) 40(15), 1165–1172 (2015). https://doi.org/10.1097/BRS.0000000000000982

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Armando Alpizar Aguirre (Instituto Nacional de Rehabilitación de México) for providing image data. The authors acknowledge the assistance of UDIATEM. This research was supported by the Universidad Nacional Autónoma de México through the projects PAPIIT (IN115015, IN115415) and the Universidad de Camagüey through the project INI

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raide Alfonso González-Carbonell .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Rivero, E.O., González-Carbonell, R.A., Ortiz-Prado, A., Jacobo-Armendáriz, V.H. (2020). Comparative Study of Biomechanical Model of the L4-L5 Lumbar Section with Mechanical Fixation. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_110

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics