Skip to main content

Routine Modeling with Time Series Metric Learning

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11728))

Included in the following conference series:

Abstract

Traditionally, the automatic recognition of human activities is performed with supervised learning algorithms on limited sets of specific activities. This work proposes to recognize recurrent activity patterns, called routines, instead of precisely defined activities. The modeling of routines is defined as a metric learning problem, and an architecture, called SS2S, based on sequence-to-sequence models is proposed to learn a distance between time series. This approach only relies on inertial data and is thus non intrusive and preserves privacy. Experimental results show that a clustering algorithm provided with the learned distance is able to recover daily routines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.physionet.org/physiobank/database/ltmm.

References

  1. Abid, A., Zou, J.: Autowarp: learning a warping distance from unlabeled time series using sequence autoencoders. arXiv preprint arXiv:1810.10107 (2018)

  2. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  3. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: ARCS, pp. 1–10. VDE (2010)

    Google Scholar 

  4. Berlemont, S., Lefebvre, G., Duffner, S., Garcia, C.: Class-balanced siamese neural networks. Neurocomputing 273, 47–56 (2018)

    Article  Google Scholar 

  5. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  6. Bohr, H.: Zur theorie der fastperiodischen funktionen. Acta Mathematica 46(1–2), 101–214 (1925)

    Article  MathSciNet  Google Scholar 

  7. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: NIPS, pp. 737–744 (1994)

    Google Scholar 

  8. Chatzaki, C., Pediaditis, M., Vavoulas, G., Tsiknakis, M.: Human Daily Activity and Fall Recognition Using a Smartphone’s Acceleration Sensor. In: Röcker, C., O’Donoghue, J., Ziefle, M., Helfert, M., Molloy, W. (eds.) ICT4AWE 2016. CCIS, vol. 736, pp. 100–118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62704-5_7

    Chapter  Google Scholar 

  9. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  10. Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: Human activity recognition using place-based decision fusion in smart homes. In: Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS (LNAI), vol. 10257, pp. 137–150. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57837-8_11

    Chapter  Google Scholar 

  11. Esling, P., Agon, C.: Time-series data mining. ACM CSUR 45(1), 12 (2012)

    MATH  Google Scholar 

  12. Faraki, M., Harandi, M.T., Porikli, F.: Large-scale metric learning: a voyage from shallow to deep. IEEE TNNLS 29(9), 4339–4346 (2018)

    Google Scholar 

  13. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: ICML, pp. 1243–1252 (2017)

    Google Scholar 

  14. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779 (2008)

    Article  Google Scholar 

  15. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR, vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical report 148(34), 13 (2001)

    Google Scholar 

  18. Kalpakis, K., Gada, D., Puttagunta, V.: Distance measures for effective clustering of arima time-series. In: IEEE ICDM, pp. 273–280. IEEE (2001)

    Google Scholar 

  19. Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: CVPR, pp. 2288–2295. IEEE (2012)

    Google Scholar 

  20. Lally, P., Van Jaarsveld, C.H., Potts, H.W., Wardle, J.: How are habits formed: modelling habit formation in the real world. Eur. J. Soc. Psychol. 40(6), 998–1009 (2010)

    Article  Google Scholar 

  21. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. Predicting structured data 1, (2006)

    Google Scholar 

  22. Lin, J., Li, Y.: Finding structural similarity in time series data using bag-of-patterns representation. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp. 461–477. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02279-1_33

    Chapter  Google Scholar 

  23. Martin, R.J.: A metric for ARMA processes. IEEE Trans. Signal Process. 48(4), 1164–1170 (2000)

    Article  MathSciNet  Google Scholar 

  24. Müller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: AAAI, pp. 2786–2792 (2016)

    Google Scholar 

  25. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

    Article  Google Scholar 

  26. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Article  Google Scholar 

  27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS, pp. 3104–3112 (2014)

    Google Scholar 

  28. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on Machine learning, pp. 1096–1103. ACM (2008)

    Google Scholar 

  29. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. JMLR 10(Feb), 207–244 (2009)

    MATH  Google Scholar 

  30. Weiss, A., et al.: Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabilitation Neural Repair 27(8), 742–752 (2013)

    Article  Google Scholar 

  31. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on Machine learning, pp. 1033–1040. ACM (2006)

    Google Scholar 

  32. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification. In: ICPR, pp. 34–39. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Compagnon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Compagnon, P., Lefebvre, G., Duffner, S., Garcia, C. (2019). Routine Modeling with Time Series Metric Learning. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019. Lecture Notes in Computer Science(), vol 11728. Springer, Cham. https://doi.org/10.1007/978-3-030-30484-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30484-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30483-6

  • Online ISBN: 978-3-030-30484-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics