Skip to main content

Anisotropic Material Behavior

  • Chapter
  • First Online:
State of the Art and Future Trends in Material Modeling

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 100))

  • 985 Accesses

Abstract

This entry is focused on description of material anisotropy in elastic and plastic ranges. Concise classification of anisotropic materials with respect to symmetry of elastic matrices as referred to the crystal lattice symmetry is given, and extended analogy between symmetries of constitutive material matrices (elastic and yield/failure) is also discussed. In this entry basic features of anisotropic initial yield criteria are discussed. Two ways to account for anisotropy are presented: the explicit vs. implicit formulations. The explicit description of anisotropy is rigorously based on well established theory of common invariants (Sayir, Goldenblat–Kopnov, von Mises, Hill). The implicit approach involves linear transformation tensor of the Cauchy stress that accounts for anisotropy to enhance the known isotropic criteria to be able to capture anisotropy, hydrostatic pressure insensitivity and asymmetry of the yield surface (Barlat, Plunckett, Cazacu, Khan). The advantages and differences of both formulations are critically presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach H, Kolupaev V (2015) Classical and non-classical failure criteria. In: Altenbach H, Sadowski T (eds) Failure and Damage Analysis of Advanced Materials, Springer, Wien, Heidelberg, New York, Dordrecht, London, CISM International Centre for Mechanical Sciences Courses and Lectures, vol 560, pp 1–66

    Google Scholar 

  • Altenbach H, Altenbach J, Zolochevsky A (1995) A generalized constitutive equation for creep of polymers at multiaxial loading. Mechanics of Composite Materials 31(6):511–518

    Article  Google Scholar 

  • Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological yield and failure criteria. In: Altenbach H, Öchsner A (eds) Plasticity of Pressure-Sensitive Materials, Springer, Heidelberg, New York, Dordrecht, London, Engineering Materials, pp 49–152

    Google Scholar 

  • Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E (2003) Plane stress function for aluminium alloy sheets – part I: theory. Int J Plast 19:1297–1319

    Google Scholar 

  • Berryman G (2005) Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J Mech Phy Solids 53:2141–2173

    Article  CAS  Google Scholar 

  • Betten J (1988) Applications of tensor functions to the formulation of yield criteria for anisotropic materials. Int J Plast 4:29–46

    Article  Google Scholar 

  • Boehler JP, Sawczuk A (1970) Équilibre limite des sols anisotropes. J Mécanique 9:5–33

    Google Scholar 

  • Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive materials. Int J Plast 20:2027–2045

    Article  CAS  Google Scholar 

  • Cazacu O, Planckett B, Barlat F (2006) Orthotropic yield criterion for hexagonal close packed metals. Int J Plast 22:1171–1194

    Article  CAS  Google Scholar 

  • Desmorat R, Marull R (2011) Non-quadratic Kelvin modes based plasticity criteria for anisotropic materials. Int J Plast 27:327–351

    Article  CAS  Google Scholar 

  • Dunand M, Maertens AP, Luo M, Mohr D (2012) Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading - part I: Plasticity. Int J Plast 36:34–49

    Article  CAS  Google Scholar 

  • Gan H, Orozco CE, Herkovich CT (2000) A strain-compatible method for micromechanical analysis of multi-phase composites. Int J Solids Struct 37:5097–5122

    Article  Google Scholar 

  • Ganczarski A, Lenczowski J (1997) On the convexity of the Goldenblatt-Kopnov yield condition. Arch Mech 49:461–475

    Google Scholar 

  • Ganczarski A, Skrzypek J (2013) Mechanics of Novel Materials. Iss. Cracow Univ. Technol., Cracow

    Google Scholar 

  • Ganczarski AW, Skrzypek JJ (2014) Constraints on the applicability range of Hill’s criterion: strong orthotropy or transverse isotropy. Acta Mechanica 225(9):2563–2582

    Article  Google Scholar 

  • Goldenblat II, Kopnov VA (1966) Obobshchennaya teoriya plasticheskogo techeniya anizotropnyh sred. Sbornik Stroitelnaya Mehanika pp 307–319

    Google Scholar 

  • Herakovich CT, Aboudi J (1999) Thermal effects in composites. In: Hetnarski RB (ed) Thermal Stresses V, Lastran Corp. Publ. Division, Rochester

    Google Scholar 

  • Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc Roy Soc London A193:281–297

    Google Scholar 

  • Hill R (1950) The Mathematical Theory of Plasticity. Oxford University Press, Oxford

    Google Scholar 

  • Jastrzebski ZD (1987) The Nature and Properties of Engineering Materials. John Wiley & Sons Inc., New York

    Google Scholar 

  • Khan AS, Liu H (2012) Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals. Int J Plast 37:1–15

    Article  CAS  Google Scholar 

  • Khan AS, Kazmi R, Farrokh B (2007) Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures. Int J Plast 23:931–950

    Article  CAS  Google Scholar 

  • Khan AS, Yu S, Liu H (2012) Deformation enhanced anisotropic responses of Ti-6Al-4V alloy, Part II: A stress rate and temperature dependent anisotropic yield criterion. Int J Plast 38:14–26

    Google Scholar 

  • Kolupaev VA (2018) Equivalent Stress Concept for Limit State Analysis, Advanced Structured Materials, vol 86. Springer, Cham

    Chapter  Google Scholar 

  • Korkolis YP, Kyriakides S (2008) Inflation and burst of aluminum tubes. Part II: An advanced yield function including deformation-induced anisotropy. Int J Plast 24:1625–1637

    Article  CAS  Google Scholar 

  • Kowalsky UK, Ahrens H, Dinkler D (1999) Distorted yield surfaces - modeling by higher order anisotropic hardening tensors. Comput Mat Sci 16:81–88

    Article  Google Scholar 

  • Lekhnitskii SG (1981) Theory of Elasticity of an Anisotropic Body. Mir Publishers, Moscow

    Google Scholar 

  • Love AEH (1944) A Treatise on the Mathematical Theory of Elasticity. Dover Publ., New York

    Google Scholar 

  • Luo M, Dunand M, Moth D (2012) Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading - Part II: Ductile fracture. Int J Plast 32–33:36–58

    Article  CAS  Google Scholar 

  • Malinin NN, Rzysko J (1981) Mechanics of Materials. PWN, Warsaw

    Google Scholar 

  • von Mises R (1913) Mechanik der festen Körper im plastisch deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 4:582–592

    Google Scholar 

  • von Mises R (1928) Mechanik der plastischen Formänderung von Kristallen. ZAMM 8(13):161–185

    Article  Google Scholar 

  • Nixon ME, Cazacu O, Lebensohn RA (2010) Anisotropic response of high-purity _-titanium: experimental characterization and constitutive modeling. Int J Plast 26:516–532

    Article  CAS  Google Scholar 

  • Nye JF (1957) Physical Properties of Crystals: Their Representations by Tensors and Matrices. Clarendon Press, Oxford

    Article  Google Scholar 

  • Ottosen NS, Ristinmaa M (2005) The Mechanics of Constitutive Modeling. Elsevier, Amsterdam

    Chapter  Google Scholar 

  • Rogers TG (1990) Yield criteria, flow rules, and hardening in anisotropic plasticity. In Boehler J.P. (ed) Yielding, damage and failure of anisotropic solids. Mech. Eng. Publ., London

    Google Scholar 

  • Rymarz C (1993) Continuum Mechanics. PWN, Warsaw

    Google Scholar 

  • Sayir M (1970) Zur Fließbedingung der Plastizitätstheorie. Ingenierurarchiv 39:414–432

    Google Scholar 

  • Sobotka Z (1969) Theorie des plastischen Fliessens von anisotropen Körpern. ZAMM 49:25–32

    Article  Google Scholar 

  • Spencer AJM (1971) Theory of invariants. In: Eringen C (ed) Continuum Physics, Academic Press, New York

    Chapter  Google Scholar 

  • Szczepinski W (1993) On deformation-induced plastic anisotropy of sheet metals. Arch Mech 45(1):3–38

    Google Scholar 

  • Tamma KK, Avila A (1999) An integrated micro/macro modelling and computational methodology for high temperature composites. In Hetnarski RB (ed) Thermal Stresses V. Lastran Corp. Publ. Division, Rochester

    Google Scholar 

  • Tsai ST, Wu EM (1971) general theory of strength for anisotropic materials. Int J Numer Methods Engng 38:2083–2088

    Google Scholar 

  • Yoshida F, Hamasaki HM, Uemori T (2013) A user-friendly 3D yield function to describe anisotropy of steel sheets. Int J Plast 45:119–139

    Article  CAS  Google Scholar 

  • Zyczkowski M (2001) Anisotropic yield conditions. In: Lemaitre J (ed) Handbook of Materials Behavior Models, Academic Press, San Diego

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Ganczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganczarski, A. (2019). Anisotropic Material Behavior. In: Altenbach, H., Öchsner, A. (eds) State of the Art and Future Trends in Material Modeling . Advanced Structured Materials, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-030-30355-6_6

Download citation

Publish with us

Policies and ethics