Skip to main content

Laser-Assisted Therapy for Peri-implant Diseases

  • Chapter
  • First Online:
Book cover Lasers in Oral and Maxillofacial Surgery

Abstract

Peri-implant disease is a new prevalent biological complication emerged from the popularity of implant therapy. Currently, there is no predictable treatment to manage advanced peri-implantitis lesions. Dental laser has a huge potential for the treatment of peri-implant disease, given that it provides a method to decontaminate implant surface without damaging its microstructures for re-osseointegration. In addition, biosimulation from low-energy laser attenuates the inflammatory status of the peri-implant defect to facilitate re-establishment of homeostasis. There are several wavelengths of dental laser available. Both Nd:YAG and Er:YAG lasers have shown promising results in vitro, and erbium lasers seem to be the most promising one due to its application on hard tissues. Although a few pilot randomized clinical trials did not show conclusive results, more well-designed controlled trials are warranted to optimize the application of laser-assisted therapy in identifying ideal indications and developing evidence-based protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coluzzi DJ. Fundamentals of lasers in dentistry: basic science, tissue interaction, and instrumentation. J Laser Dent. 2008;16:4–10.

    Google Scholar 

  2. Hale GMQM. Optical constants of water in the 200-nm to 200-lm wavelength region. Appl Opt. 1973;12:555–63.

    Article  CAS  Google Scholar 

  3. Niemz MH. Laser-tissue interaction. Fundamentals and applications. Berlin Heidelberg: Springer-Verlag; 1996.

    Book  Google Scholar 

  4. Schwarz F, Aoki A, Sculean A, Becker J. The impact of laser application on periodontal and peri-implant wound healing. Periodontol. 2009;51:79–108. https://doi.org/10.1111/j.1600-0757.2009.00301.x.

    Article  Google Scholar 

  5. Seka WFJ, Fried D, Visuri SR, Walsh JT. Laser ablation of dental hard tissue: from explosive ablation to plasma-mediated ablation. Proc SPIE. 1996;2672(166):144–58.

    Article  Google Scholar 

  6. Seka WRP, Featherstone JDB, Fried D. Laser ablation of dental hard tissue. J Laser Dent. 2007;15:61–72.

    Google Scholar 

  7. Nelson JS, Yow L, Liaw LH, Macleay L, Zavar RB, Orenstein A, et al. Ablation of bone and methacrylate by a prototype mid-infrared erbium:YAG laser. Lasers Surg Med. 1988;8(5):494–500.

    Article  CAS  Google Scholar 

  8. Nuss RC, Fabian RL, Sarkar R, Puliafito CA. Infrared laser bone ablation. Lasers Surg Med. 1988;8(4):381–91.

    Article  CAS  Google Scholar 

  9. Aoki A, Sasaki KM, Watanabe H, Ishikawa I. Lasers in nonsurgical periodontal therapy. Periodontol. 2004;36:59–97. https://doi.org/10.1111/j.1600-0757.2004.03679.x.

    Article  Google Scholar 

  10. Goncalves F, Zanetti AL, Zanetti RV, Martelli FS, Avila-Campos MJ, Tomazinho LF, et al. Effectiveness of 980-mm diode and 1064-nm extra-long-pulse neodymium-doped yttrium aluminum garnet lasers in implant disinfection. Photomed Laser Surg. 2010;28(2):273–80. https://doi.org/10.1089/pho.2009.2496.

    Article  PubMed  Google Scholar 

  11. Yamamoto A, Tanabe T. Treatment of peri-implantitis around tiunite-surface implants using Er:YAG laser microexplosions. Int J Periodontics Restorative Dent. 2013;33(1):21–30.

    Article  Google Scholar 

  12. Ohshiro T, Calderhead RG. Development of low reactive-level laser therapy and its present status. J Clin Laser Med Surg. 1991;9(4):267–75. https://doi.org/10.1089/clm.1991.9.267.

    Article  CAS  PubMed  Google Scholar 

  13. Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg. 2004;22(4):323–9. https://doi.org/10.1089/pho.2004.22.323.

    Article  PubMed  Google Scholar 

  14. Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. Am J Surg. 1971;122(4):532–5.

    Article  CAS  Google Scholar 

  15. Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, et al. The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg. 2004;22(3):241–7. https://doi.org/10.1089/1549541041438623.

    Article  PubMed  Google Scholar 

  16. Albertini R, Aimbire FS, Correa FI, Ribeiro W, Cogo JC, Antunes E, et al. Effects of different protocol doses of low power gallium-aluminum-arsenate (Ga-Al-As) laser radiation (650 nm) on carrageenan induced rat paw oedema. J Photochem Photobiol B. 2004;74(2-3):101–7. https://doi.org/10.1016/j.jphotobiol.2004.03.002.

    Article  CAS  PubMed  Google Scholar 

  17. Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg. 2006;24(2):158–68. https://doi.org/10.1089/pho.2006.24.158.

    Article  CAS  PubMed  Google Scholar 

  18. Mombelli A, van Oosten MA, Schurch E Jr, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987;2(4):145–51.

    Article  CAS  Google Scholar 

  19. Albrektsson T, Isidor F, editors. Consensus report of session IV. First European Workshop on Periodontology. London: Quintessence; 1994.

    Google Scholar 

  20. Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. J Periodontol. 2013;84(4):436–43. https://doi.org/10.1902/jop.2013.134001.

  21. Suarez-Lopez Del Amo F, Lin GH, Monje A, Galindo-Moreno P, Wang HL. Influence of soft tissue thickness on peri-implant marginal bone loss: a systematic review and meta-analysis. J Periodontol. 2016;87(6):690–9. https://doi.org/10.1902/jop.2016.150571.

    Article  PubMed  Google Scholar 

  22. Koldsland OC, Scheie AA, Aass AM. Prevalence of peri-implantitis related to severity of the disease with different degrees of bone loss. J Periodontol. 2010;81(2):231–8. https://doi.org/10.1902/jop.2009.090269.

    Article  PubMed  Google Scholar 

  23. Renvert S, Lindahl C, Rutger PG. The incidence of peri-implantitis for two different implant systems over a period of thirteen years. J Clin Periodontol. 2012;39(12):1191–7. https://doi.org/10.1111/jcpe.12017.

    Article  PubMed  Google Scholar 

  24. Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42(Suppl 16):S158–71. https://doi.org/10.1111/jcpe.12334.

    Article  PubMed  Google Scholar 

  25. Suarez-Lopez Del Amo F, Yu SH, Wang HL. Non-surgical therapy for peri-implant diseases: a systematic review. J Oral Maxillofac Res. 2016;7(3):e13. https://doi.org/10.5037/jomr.2016.7313.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pontoriero R, Tonelli MP, Carnevale G, Mombelli A, Nyman SR, Lang NP. Experimentally induced peri-implant mucositis. A clinical study in humans. Clin Oral Implants Res. 1994;5(4):254–9.

    Article  CAS  Google Scholar 

  27. Zitzmann NU, Berglundh T, Marinello CP, Lindhe J. Experimental peri-implant mucositis in man. J Clin Periodontol. 2001;28(6):517–23.

    Article  CAS  Google Scholar 

  28. Salvi GE, Aglietta M, Eick S, Sculean A, Lang NP, Ramseier CA. Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans. Clin Oral Implants Res. 2012;23(2):182–90. https://doi.org/10.1111/j.1600-0501.2011.02220.x.

    Article  PubMed  Google Scholar 

  29. Lindhe J, Meyle J, Group DoEWoP. Peri-implant diseases: consensus report of the sixth European Workshop on Periodontology. J Clin Periodontol. 2008;35(8 Suppl):282–5. https://doi.org/10.1111/j.1600-051X.2008.01283.x.

    Article  PubMed  Google Scholar 

  30. Padial-Molina M, Suarez F, Rios HF, Galindo-Moreno P, Wang HL. Guidelines for the diagnosis and treatment of peri-implant diseases. Int J Periodontics Restorative Dent. 2014;34(6):e102–11. https://doi.org/10.11607/prd.1994.

    Article  PubMed  Google Scholar 

  31. Loe H, Anerud A, Boysen H, Morrison E. Natural history of periodontal disease in man. Rapid, moderate and no loss of attachment in Sri Lankan laborers 14 to 46 years of age. J Clin Periodontol. 1986;13(5):431–45.

    Article  CAS  Google Scholar 

  32. Monje A, Galindo-Moreno P, Tozum TF, Suarez-Lopez del Amo F, Wang HL. Into the paradigm of local factors as contributors for peri-implant disease: short communication. Int J Oral Maxillofac Implants. 2016;31(2):288–92. https://doi.org/10.11607/jomi.4265.

    Article  PubMed  Google Scholar 

  33. Linkevicius T, Puisys A, Vindasiute E, Linkeviciene L, Apse P. Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin Oral Implants Res. 2013;24(11):1179–84. https://doi.org/10.1111/j.1600-0501.2012.02570.x.

    Article  PubMed  Google Scholar 

  34. Staubli N, Walter C, Schmidt JC, Weiger R, Zitzmann NU. Excess cement and the risk of peri-implant disease—a systematic review. Clin Oral Implants Res. 2016; https://doi.org/10.1111/clr.12954.

  35. Fu JH, Hsu YT, Wang HL. Identifying occlusal overload and how to deal with it to avoid marginal bone loss around implants. Eur J Oral Implantol. 2012;5(Suppl):S91–103.

    PubMed  Google Scholar 

  36. Renvert S, Polyzois I. Risk indicators for peri-implant mucositis: a systematic literature review. J Clin Periodontol. 2015;42(Suppl 16):S172–86. https://doi.org/10.1111/jcpe.12346.

    Article  PubMed  Google Scholar 

  37. Renvert S, Quirynen M. Risk indicators for peri-implantitis. A narrative review. Clin Oral Implants Res. 2015;26(Suppl 11):15–44. https://doi.org/10.1111/clr.12636.

    Article  PubMed  Google Scholar 

  38. Decker AM, Sheridan R, Lin GH, Sutthiboonyapan P, Carroll W, Wang HL. A prognosis system for periimplant diseases. Implant Dent. 2015;24(4):416–21. https://doi.org/10.1097/ID.0000000000000276.

    Article  PubMed  Google Scholar 

  39. Claffey N, Clarke E, Polyzois I, Renvert S. Surgical treatment of peri-implantitis. J Clin Periodontol. 2008;35(8 Suppl):316–32. https://doi.org/10.1111/j.1600-051X.2008.01277.x.

    Article  PubMed  Google Scholar 

  40. Rooney J, Midda M, Leeming J. A laboratory investigation of the bactericidal effect of a NdYAG laser. Br Dent J. 1994;176(2):61–4. https://doi.org/10.1038/sj.bdj.4808364.

    Article  CAS  PubMed  Google Scholar 

  41. Ando Y, Aoki A, Watanabe H, Ishikawa I. Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg Med. 1996;19(2):190–200. https://doi.org/10.1002/(SICI)1096-9101(1996)19:2<190::AID-LSM11>3.0.CO;2-B.

    Article  CAS  PubMed  Google Scholar 

  42. Coffelt DW, Cobb CM, MacNeill S, Rapley JW, Killoy WJ. Determination of energy density threshold for laser ablation of bacteria. An in vitro study. J Clin Periodontol. 1997;24(1):1–7.

    Article  CAS  Google Scholar 

  43. Wang HL, Garaicoa-Pazmino C, Collins A, Ong HS, Chudri R, Giannobile WV. Protein biomarkers and microbial profiles in peri-implantitis. Clin Oral Implants Res. 2016;27(9):1129–36. https://doi.org/10.1111/clr.12708.

    Article  CAS  PubMed  Google Scholar 

  44. Kreisler M, Gotz H, Duschner H. Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants. 2002;17(2):202–11.

    PubMed  Google Scholar 

  45. Folwaczny M, Aggstaller H, Mehl A, Hickel R. Removal of bacterial endotoxin from root surface with Er:YAG laser. Am J Dent. 2003;16(1):3–5.

    PubMed  Google Scholar 

  46. Yamaguchi H, Kobayashi K, Osada R, Sakuraba E, Nomura T, Arai T, et al. Effects of irradiation of an erbium:YAG laser on root surfaces. J Periodontol. 1997;68(12):1151–5. https://doi.org/10.1902/jop.1997.68.12.1151.

    Article  CAS  PubMed  Google Scholar 

  47. Mailoa J, Lin GH, Chan HL, MacEachern M, Wang HL. Clinical outcomes of using lasers for peri-implantitis surface detoxification: a systematic review and meta-analysis. J Periodontol. 2014;85(9):1194–202. https://doi.org/10.1902/jop.2014.130620.

    Article  PubMed  Google Scholar 

  48. Takasaki AA, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I. Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci. 2007;22(3):143–57. https://doi.org/10.1007/s10103-006-0430-x.

    Article  PubMed  Google Scholar 

  49. Nevins M, Nevins ML, Yamamoto A, Yoshino T, Ono Y, Wang CW, et al. Use of Er:YAG laser to decontaminate infected dental implant surface in preparation for reestablishment of bone-to-implant contact. Int J Periodontics Restorative Dent. 2014;34(4):461–6. https://doi.org/10.11607/prd.2192.

    Article  PubMed  Google Scholar 

  50. Karu T. Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B. 1989;3(4):638–40.

    Article  CAS  Google Scholar 

  51. Shimizu N, Yamaguchi M, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, et al. Inhibition of prostaglandin E2 and interleukin 1-beta production by low-power laser irradiation in stretched human periodontal ligament cells. J Dent Res. 1995;74(7):1382–8. https://doi.org/10.1177/00220345950740071001.

    Article  CAS  PubMed  Google Scholar 

  52. Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci. 2000;108(1):29–34.

    Article  CAS  Google Scholar 

  53. Matys J, Dominiak M. Assessment of pain when uncovering implants with Er:YAG laser or scalpel for second stage surgery. Adv Clin Exp Med. 2016;25(6):1179–84. https://doi.org/10.17219/acem/62456.

    Article  PubMed  Google Scholar 

  54. Aoki A, Mizutani K, Schwarz F, Sculean A, Yukna RA, Takasaki AA, et al. Periodontal and peri-implant wound healing following laser therapy. Periodontol. 2015;68(1):217–69. https://doi.org/10.1111/prd.12080.

    Article  Google Scholar 

  55. Gavish L, Perez LS, Reissman P, Gertz SD. Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med. 2008;40(5):371–8. https://doi.org/10.1002/lsm.20635.

    Article  PubMed  Google Scholar 

  56. Tang E, Khan I, Andreana S, Arany PR. Laser-activated transforming growth factor-beta1 induces human beta-defensin 2: implications for laser therapies for periodontitis and peri-implantitis. J Periodontal Res. 2016; https://doi.org/10.1111/jre.12399.

  57. Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, et al. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr. 2008;120(3-4):112–7. https://doi.org/10.1007/s00508-008-0932-6.

    Article  CAS  PubMed  Google Scholar 

  58. Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang CY, Abiko Y, et al. Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci. 2010;25(4):559–69. https://doi.org/10.1007/s10103-010-0761-5.

    Article  PubMed  Google Scholar 

  59. Saygun I, Nizam N, Ural AU, Serdar MA, Avcu F, Tozum TF. Low-level laser irradiation affects the release of basic fibroblast growth factor (bFGF), insulin-like growth factor-I (IGF-I), and receptor of IGF-I (IGFBP3) from osteoblasts. Photomed Laser Surg. 2012;30(3):149–54. https://doi.org/10.1089/pho.2011.3079.

    Article  CAS  PubMed  Google Scholar 

  60. Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone. 1998;22(4):347–54.

    Article  CAS  Google Scholar 

  61. Aimbire F, Lopes-Martins RA, Castro-Faria-Neto HC, Albertini R, Chavantes MC, Pacheco MT, et al. Low-level laser therapy can reduce lipopolysaccharide-induced contractile force dysfunction and TNF-alpha levels in rat diaphragm muscle. Lasers Med Sci. 2006;21(4):238–44. https://doi.org/10.1007/s10103-006-0405-y.

    Article  CAS  PubMed  Google Scholar 

  62. Yamasaki A, Tamamura K, Sakurai Y, Okuyama N, Yusa J, Ito H. Remodeling of the rat gingiva induced by CO2 laser coagulation mode. Lasers Surg Med. 2008;40(10):695–703. https://doi.org/10.1002/lsm.20712.

  63. Yamasaki A, Ito H, Yusa J, Sakurai Y, Okuyama N, Ozawa R. Expression of heat shock proteins, Hsp70 and Hsp25, in the rat gingiva after irradiation with a CO2 laser in coagulation mode. J Periodontal Res. 2010;45(3):323–30. https://doi.org/10.1111/j.1600-0765.2009.01239.x.

    Article  CAS  PubMed  Google Scholar 

  64. Rajaei Jafarabadi M, Rouhi G, Kaka G, Sadraie SH, Arum J. The effects of photobiomodulation and low-amplitude high-frequency vibration on bone healing process: a comparative study. Lasers Med Sci. 2016;31(9):1827–36. https://doi.org/10.1007/s10103-016-2058-9.

    Article  CAS  PubMed  Google Scholar 

  65. Tao CY, Lee N, Chang HC, Yang C, Yu XH, Chang PC. Evaluation of 660 nm LED light irradiation on the strategies for treating experimental periodontal intrabony defects. Lasers Med Sci. 2016;31(6):1113–21. https://doi.org/10.1007/s10103-016-1958-z.

    Article  PubMed  Google Scholar 

  66. Khadra M, Ronold HJ, Lyngstadaas SP, Ellingsen JE, Haanaes HR. Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res. 2004;15(3):325–32. https://doi.org/10.1111/j.1600-0501.2004.00994.x.

    Article  PubMed  Google Scholar 

  67. Dortbudak O, Haas R, Mailath-Pokorny G. Effect of low-power laser irradiation on bony implant sites. Clin Oral Implants Res. 2002;13(3):288–92.

    Article  Google Scholar 

  68. Naka T, Yokose S. Application of laser-induced bone therapy by carbon dioxide laser irradiation in implant therapy. Int J Dent. 2012;2012:409496. https://doi.org/10.1155/2012/409496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Omasa S, Motoyoshi M, Arai Y, Ejima K, Shimizu N. Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed Laser Surg. 2012;30(5):255–61. https://doi.org/10.1089/pho.2011.3157.

    Article  CAS  PubMed  Google Scholar 

  70. Amorim JC, de Sousa GR, de Barros Silveira L, Prates RA, Pinotti M, Ribeiro MS. Clinical study of the gingiva healing after gingivectomy and low-level laser therapy. Photomed Laser Surg. 2006;24(5):588–94. https://doi.org/10.1089/pho.2006.24.588.

    Article  PubMed  Google Scholar 

  71. Sanz-Moliner JD, Nart J, Cohen RE, Ciancio SG. The effect of an 810-nm diode laser on postoperative pain and tissue response after modified Widman flap surgery: a pilot study in humans. J Periodontol. 2013;84(2):152–8. https://doi.org/10.1902/jop.2012.110660.

    Article  PubMed  Google Scholar 

  72. Arashiro DS, Rapley JW, Cobb CM, Killoy WJ. Histologic evaluation of porcine skin incisions produced by CO2 laser, electrosurgery, and scalpel. Int J Periodontics Restorative Dent. 1996;16(5):479–91.

    CAS  PubMed  Google Scholar 

  73. Sinha UK, Gallagher LA. Effects of steel scalpel, ultrasonic scalpel, CO2 laser, and monopolar and bipolar electrosurgery on wound healing in guinea pig oral mucosa. Laryngoscope. 2003;113(2):228–36. https://doi.org/10.1097/00005537-200302000-00007.

    Article  PubMed  Google Scholar 

  74. Sawabe M, Aoki A, Komaki M, Iwasaki K, Ogita M, Izumi Y. Gingival tissue healing following Er:YAG laser ablation compared to electrosurgery in rats. Lasers Med Sci. 2015;30(2):875–83. https://doi.org/10.1007/s10103-013-1478-z.

    Article  PubMed  Google Scholar 

  75. Merigo E, Clini F, Fornaini C, Oppici A, Paties C, Zangrandi A, et al. Laser-assisted surgery with different wavelengths: a preliminary ex vivo study on thermal increase and histological evaluation. Lasers Med Sci. 2013;28(2):497–504. https://doi.org/10.1007/s10103-012-1081-8.

    Article  PubMed  Google Scholar 

  76. Renvert S, Roos-Jansaker AM, Claffey N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol. 2008;35(8 Suppl):305–15. https://doi.org/10.1111/j.1600-051X.2008.01276.x.

    Article  PubMed  Google Scholar 

  77. Heitz-Mayfield LJ, Mombelli A. The therapy of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):325–45. https://doi.org/10.11607/jomi.2014suppl.g5.3.

    Article  PubMed  Google Scholar 

  78. Chan HL, Lin GH, Suarez F, MacEachern M, Wang HL. Surgical management of peri-implantitis: a systematic review and meta-analysis of treatment outcomes. J Periodontol. 2014;85(8):1027–41. https://doi.org/10.1902/jop.2013.130563.

    Article  PubMed  Google Scholar 

  79. Kotsakis GA, Konstantinidis I, Karoussis IK, Ma X, Chu H. Systematic review and meta-analysis of the effect of various laser wavelengths in the treatment of peri-implantitis. J Periodontol. 2014;85(9):1203–13. https://doi.org/10.1902/jop.2014.130610.

    Article  PubMed  Google Scholar 

  80. Natto ZS, Aladmawy M, Levi PA Jr, Wang HL. Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants. 2015;30(2):338–45. https://doi.org/10.11607/jomi.3846.

    Article  PubMed  Google Scholar 

  81. Froum SJ, Rosen PS. A proposed classification for peri-implantitis. Int J Periodontics Restorative Dent. 2012;32(5):533–40.

    PubMed  Google Scholar 

  82. Schar D, Ramseier CA, Eick S, Arweiler NB, Sculean A, Salvi GE. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: six-month outcomes of a prospective randomized clinical trial. Clin Oral Implants Res. 2013;24(1):104–10. https://doi.org/10.1111/j.1600-0501.2012.02494.x.

    Article  PubMed  Google Scholar 

  83. Arisan V, Karabuda ZC, Arici SV, Topcuoglu N, Kulekci G. A randomized clinical trial of an adjunct diode laser application for the nonsurgical treatment of peri-implantitis. Photomed Laser Surg. 2015;33(11):547–54. https://doi.org/10.1089/pho.2015.3956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Al-Falaki R, Cronshaw M, Hughes FJ. Treatment outcome following use of the erbium, chromium:yttrium, scandium, gallium, garnet laser in the non-surgical management of peri-implantitis: a case series. Br Dent J. 2014;217(8):453–7. https://doi.org/10.1038/sj.bdj.2014.910.

    Article  CAS  PubMed  Google Scholar 

  85. Mettraux GR, Sculean A, Burgin WB, Salvi GE. Two-year clinical outcomes following non-surgical mechanical therapy of peri-implantitis with adjunctive diode laser application. Clin Oral Implants Res. 2016;27(7):845–9. https://doi.org/10.1111/clr.12689.

    Article  PubMed  Google Scholar 

  86. Lerario F, Roncati M, Gariffo A, Attorresi E, Lucchese A, Galanakis A, et al. Non-surgical periodontal treatment of peri-implant diseases with the adjunctive use of diode laser: preliminary clinical study. Lasers Med Sci. 2016;31(1):1–6. https://doi.org/10.1007/s10103-015-1785-7.

    Article  PubMed  Google Scholar 

  87. Abduljabbar T, Javed F, Kellesarian SV, Vohra F, Romanos GE. Effect of Nd:YAG laser-assisted non-surgical mechanical debridement on clinical and radiographic peri-implant inflammatory parameters in patients with peri-implant disease. J Photochem Photobiol B. 2017;168:16–9. https://doi.org/10.1016/j.jphotobiol.2017.01.015.

    Article  CAS  PubMed  Google Scholar 

  88. Monje A, Galindo-Moreno P, Canullo L, Greenwell H, Wang HL. Editorial: From early physiological marginal bone loss to peri-implant disease: on the unknown local contributing factors. Int J Periodontics Restorative Dent. 2015;35(6):764–5. https://doi.org/10.11607/prd.2597.

    Article  PubMed  Google Scholar 

  89. Renvert S, Lindahl C, Roos Jansaker AM, Persson GR. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol. 2011;38(1):65–73. https://doi.org/10.1111/j.1600-051X.2010.01646.x.

    Article  PubMed  Google Scholar 

  90. Persson GR, Roos-Jansaker AM, Lindahl C, Renvert S. Microbiologic results after non-surgical erbium-doped:yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial. J Periodontol. 2011;82(9):1267–78. https://doi.org/10.1902/jop.2011.100660.

    Article  PubMed  Google Scholar 

  91. Schwarz F, Sahm N, Iglhaut G, Becker J. Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: a randomized controlled clinical study. J Clin Periodontol. 2011;38(3):276–84. https://doi.org/10.1111/j.1600-051X.2010.01690.x.

    Article  PubMed  Google Scholar 

  92. Schwarz F, Hegewald A, John G, Sahm N, Becker J. Four-year follow-up of combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination. J Clin Periodontol. 2013;40(10):962–7. https://doi.org/10.1111/jcpe.12143.

    Article  PubMed  Google Scholar 

  93. Schwarz F, John G, Schmucker A, Sahm N, Becker J. Combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination: a 7-year follow-up observation. J Clin Periodontol. 2017;44(3):337–42. https://doi.org/10.1111/jcpe.12648.

    Article  CAS  PubMed  Google Scholar 

  94. Wilson TG Jr, Valderrama P, Burbano M, Blansett J, Levine R, Kessler H, et al. Foreign bodies associated with peri-implantitis human biopsies. J Periodontol. 2015;86(1):9–15. https://doi.org/10.1902/jop.2014.140363.

    Article  CAS  PubMed  Google Scholar 

  95. Parma-Benfenati S, Roncati M, Galletti P, Tinti C. Peri-implantitis treatment with a regenerative approach: clinical outcomes on reentry. Int J Periodontics Restorative Dent. 2015;35(5):625–36. https://doi.org/10.11607/prd.2374.

    Article  PubMed  Google Scholar 

  96. Badran Z, Bories C, Struillou X, Saffarzadeh A, Verner C, Soueidan A. Er:YAG laser in the clinical management of severe peri-implantitis: a case report. J Oral Implantol. 2011;37:212–7. https://doi.org/10.1563/AAID-JOI-D-09-00145.1.

    Article  PubMed  Google Scholar 

  97. Yoshino T, Yamamoto A, Ono Y. Innovative regeneration technology to solve peri-implantitis by Er:YAG laser based on the microbiologic diagnosis: a case series. Int J Periodontics Restorative Dent. 2015;35(1):67–73. https://doi.org/10.11607/prd.2116.

    Article  PubMed  Google Scholar 

  98. Suzuki JB. Salvaging implants with an Nd:YAG laser: a novel approach to a growing problem. Compend Contin Educ Dent. 2015;36(10):756–61.

    PubMed  Google Scholar 

  99. Salmeron S, Rezende ML, Consolaro A, Sant’ana AC, Damante CA, Greghi SL, et al. Laser therapy as an effective method for implant surface decontamination: a histomorphometric study in rats. J Periodontol. 2013;84(5):641–9. https://doi.org/10.1902/jop.2012.120166.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the assistant graphic designer Victoria Zakrzeski at the University of Michigan School of Dentistry for constructing the figure and the courtesy of postdoctoral resident Dr. Carlos Garaicoa, Graduate Periodontics, for sharing the case.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hom-Lay Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J.C., Wang, HL. (2020). Laser-Assisted Therapy for Peri-implant Diseases. In: Stübinger, S., Klämpfl, F., Schmidt, M., Zeilhofer, HF. (eds) Lasers in Oral and Maxillofacial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-29604-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29604-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29603-2

  • Online ISBN: 978-3-030-29604-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics