Skip to main content

Enhancing the Conciseness of Linked Data by Discovering Synonym Predicates

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11775))

Abstract

In the meantime of the rapidly growing of Linked Data, the quality of these datasets is yet a challenge. A close examination of the quality of this data could be very critical, especially if important researches or professional decisions depend on it. Nowadays, several Linked Data quality metrics have been proposed which cover numerous dimensions of Linked Data quality such as completeness, consistency, conciseness and interlinking. In this paper, we propose an approach to enhance the conciseness of linked datasets by discovering synonym predicates. This approach is based, in addition to a statistical analysis, on a deep semantic analysis of data and on learning algorithms. We argue that studying the meaning of predicates can help to improve the accuracy of results. A set of experiments are conducted on real-world datasets to evaluate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lyon is a French city.

  2. 2.

    https://code.google.com/archive/p/word2vec/.

  3. 3.

    https://wiki.dbpedia.org.

  4. 4.

    https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/.

  5. 5.

    http://ai.stanford.edu/~amaas/data/sentiment/.

  6. 6.

    http://www.cs.cornell.edu/people/pabo/movie-review-data/.

References

  1. Abedjan, Z., Naumann, F.: Context and target configurations for mining RDF data. In: Proceedings of the 1st International Workshop on Search and Mining Entity-Relationship Data, pp. 23–24. ACM (2011)

    Google Scholar 

  2. Abedjan, Z., Naumann, F.: Synonym analysis for predicate expansion. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 140–154. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_10

    Chapter  Google Scholar 

  3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  4. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33615-7_18

    Chapter  Google Scholar 

  5. Fu, L., Wang, H., Jin, W., Yu, Y.: Towards better understanding and utilizing relations in DBpedia. Web Intell. Agent Syst. Int. J. 10(3), 291–303 (2012)

    Google Scholar 

  6. Fürber, C., Hepp, M.: SWIQA-a semantic web information quality assessment framework. In: ECIS, vol. 15, p. 19 (2011)

    Google Scholar 

  7. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. Int. J. Very Large Data Bases 24(6), 707–730 (2015)

    Article  Google Scholar 

  8. Gunaratna, K., Thirunarayan, K., Jain, P., Sheth, A., Wijeratne, S.: A statistical and schema independent approach to identify equivalent properties on linked data. In: Proceedings of the 9th International Conference on Semantic Systems, pp. 33–40. ACM (2013)

    Google Scholar 

  9. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  10. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Kr 6, 57–67 (2006)

    Google Scholar 

  11. Issa, S., Paris, P., Hamdi, F., Cherfi, S.S.S.: Revealing the conceptual schemas of RDF datasets. In: 31st International Conference on Advanced Information Systems Engineering (CAiSE), Italy, pp. 1–15, June 2019

    Google Scholar 

  12. Issa, S., Paris, P.-H., Hamdi, F.: Assessing the completeness evolution of DBpedia: a case study. In: de Cesare, S., Frank, U. (eds.) ER 2017. LNCS, vol. 10651, pp. 238–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70625-2_22

    Chapter  Google Scholar 

  13. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl. Eng. Rev. 18(1), 1–31 (2003)

    Article  Google Scholar 

  14. Lei, Y., Sabou, M., Lopez, V., Zhu, J., Uren, V., Motta, E.: An infrastructure for acquiring high quality semantic metadata. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 230–244. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_19

    Chapter  Google Scholar 

  15. Lei, Y., Uren, V., Motta, E.: A framework for evaluating semantic metadata. In: Proceedings of the 4th International Conference on Knowledge Capture, pp. 135–142. ACM (2007)

    Google Scholar 

  16. Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and fusion. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops, pp. 116–123. ACM (2012)

    Google Scholar 

  17. Mika, P.: Flink: semantic web technology for the extraction and analysis of social networks. Web Semant. Sci. Serv. Agents WWW 3(2), 211–223 (2005)

    Article  Google Scholar 

  18. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)

    Article  Google Scholar 

  19. Salton, G.: Automatic text processing (1988)

    Google Scholar 

  20. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of relations, instances, and schema. Proc. VLDB Endowment 5(3), 157–168 (2011)

    Article  Google Scholar 

  21. Töpper, G., Knuth, M., Sack, H.: DBpedia ontology enrichment for inconsistency detection. In: Proceedings of the 8th International Conference on Semantic Systems, pp. 33–40. ACM (2012)

    Google Scholar 

  22. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)

    Article  Google Scholar 

  23. Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: An unsupervised data-driven method to discover equivalent relations in large linked datasets. Semant. web 8(2), 197–223 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhi Issa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Issa, S., Hamdi, F., Cherfi, S.Ss. (2019). Enhancing the Conciseness of Linked Data by Discovering Synonym Predicates. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds) Knowledge Science, Engineering and Management. KSEM 2019. Lecture Notes in Computer Science(), vol 11775. Springer, Cham. https://doi.org/10.1007/978-3-030-29551-6_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29551-6_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29550-9

  • Online ISBN: 978-3-030-29551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics