Skip to main content

Stem Cell Delivery Systems and Devices - Spraying

  • Chapter
  • First Online:
Stem Cell-Based Therapy for Lung Disease

Abstract

Despite huge progress in interrogating the benefits of stem cells for lung diseases, more studies on optimal routes of cell delivery are required. The ability of intravenously injected stem cells to reach all parts of the lung is limited, particularly when the extracellular matrix and vasculature are damaged in various lung diseases. Hence, an alternative route of stem cell administration that delivers cells directly to the lung through the airway may provide a more adequate supply of stem cells at the site of injury. In many lung injuries and diseases, much of the damage occurs in the airway epithelium, and thus intratracheal administration of the stem cells directly delivered to the injury site may be beneficial. For optimal therapeutic benefits, it is important that cells are uniformly distributed across the whole lung. The exogenous cells are required to be in a healthy state when delivered to the injured area. Therefore, there is a need to optimise the technology to deliver cells directly to airways. This chapter presents an overview of the currently available technologies for cell spraying and discusses other important parameters for successful delivery of stem cells to the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tzouvelekis A, et al. Mesenchymal stem cells for the treatment of idiopathic pulmonary fibrosis. Front Med (Lausanne). 2018;5:142.

    Article  Google Scholar 

  2. Crisanti MC, et al. Novel methods for delivery of cell-based therapies. J Surg Res. 2008;146(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  3. Gui L, et al. Efficient intratracheal delivery of airway epithelial cells in mice and pigs. Am J Physiol Lung Cell Mol Physiol. 2015;308(2):L221–8.

    Article  CAS  PubMed  Google Scholar 

  4. Leblond A-L, et al. Developing cell therapy techniques for respiratory disease: intratracheal delivery of genetically engineered stem cells in a murine model of airway injury. Hum Gene Ther. 2009;20(11):1329–43.

    Article  CAS  PubMed  Google Scholar 

  5. Polverino F. Best of Milan 2017-repair of the emphysematous lung: mesenchymal stromal cell and matrix. J Thorac Dis. 2017;9(Suppl 16):S1544–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alhasan L, et al. Assessment of the potential of a high frequency acoustomicrofluidic nebulisation platform for inhaled stem cell therapy. Integr Biol. 2015;8:12–20.

    Article  Google Scholar 

  7. Wong AP, et al. Targeted cell replacement with bone marrow cells for airway epithelial regeneration. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L740–52.

    Article  CAS  PubMed  Google Scholar 

  8. Duchesneau P, Wong AP, Waddell TK. Optimization of targeted cell replacement therapy: a new approach for lung disease. Mol Ther. 2010;18(10):1830–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rejman J, Colombo C, Conese M. Engraftment of bone marrow-derived stem cells to the lung in a model of acute respiratory infection by Pseudomonas aeruginosa. Mol Ther. 2009;17(7):1257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Urbanek K, et al. Intratracheal administration of mesenchymal stem cells modulates tachykinin system, suppresses airway remodeling and reduces airway Hyperresponsiveness in an animal model. PLoS One. 2016;11(7):e0158746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dai R, et al. Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model. BMC Pulm Med. 2018;18(1):131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ge X, et al. Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma. J Cell Biochem. 2013;114(7):1595–605.

    Article  CAS  PubMed  Google Scholar 

  13. Spaziano G, et al. Intratracheal administration of bone marrow-derived mesenchymal stem cells ameliorates lung function. Eur Respir J. 2016;48(suppl 60):OA4538.

    Google Scholar 

  14. Katsha AM, et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther. 2011;19(1):196–203.

    Article  CAS  PubMed  Google Scholar 

  15. Tibboel J, et al. Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema. COPD. 2014;11(3):310–8.

    PubMed  Google Scholar 

  16. Guan XJ, et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem. 2013;114(2):323–35.

    Article  CAS  PubMed  Google Scholar 

  17. Curley G, et al. The role of intra-tracheal versus systemic delivery of mesenchymal stem cells during recovery and resolution following ventilator induced lung injury. Am J Respir Crit Care Med. 2012;185:A4973.

    Google Scholar 

  18. Curley GF, et al. Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury. Anesthesiology. 2013;118(4):924–32.

    Article  CAS  PubMed  Google Scholar 

  19. Luo L, et al. Combination treatment of adipose-derived stem cells and adiponectin attenuates pulmonary arterial hypertension in rats by inhibiting pulmonary arterial smooth muscle cell proliferation and regulating the AMPK/BMP/Smad pathway. Int J Mol Med. 2018;41:51–60.

    CAS  PubMed  Google Scholar 

  20. Baber SR, et al. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Phys Heart Circ Phys. 2007;292(2):H1120–8.

    CAS  Google Scholar 

  21. Chang YS, et al. Critical role of vascular endothelial growth factor secreted by mesenchymal stem cells in hyperoxic lung injury. Am J Respir Cell Mol Biol. 2014;51(3):391–9.

    Article  PubMed  CAS  Google Scholar 

  22. van Haaften T, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009;180(11):1131–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kim YE, et al. Intratracheal transplantation of mesenchymal stem cells attenuates hyperoxia-induced lung injury by down-regulating, but not direct inhibiting formyl peptide receptor 1 in the newborn mice. PLoS One. 2018;13(10):e0206311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cargnoni A, et al. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces Bleomycin-induced lung fibrosis. Cell Transplant. 2009;18(4):405–22.

    Article  PubMed  Google Scholar 

  25. Serrano-Mollar A, et al. Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am J Respir Crit Care Med. 2007;176(12):1261–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wong AP, et al. Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest. 2009;119:336–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Eggenhofer E, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Devine SM, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 2003;101:2999–3001.

    Article  CAS  PubMed  Google Scholar 

  29. Yang MY, Chan JGY, Chan H-K. Pulmonary drug delivery by powder aerosols. J Control Release. 2014;193:228–40.

    Article  CAS  PubMed  Google Scholar 

  30. Kuzmov A, Mink T. Nanotechnology approaches for inhalation treatment of lung diseases. J Control Release. 2015;219:500–18.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang T, et al. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B. 2018;8(3):440–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Araujo IM, Abreu SC, Maron-Gutierrez T. Bone marrow- derived mononuclear cell therapy in experimental pulmonary and extrapulmonary acute lung injury. Crit Care Med. 2010;38:1733–41.

    Article  PubMed  Google Scholar 

  33. Abreu SC, Antunes MA, Maron-Gutierrez T. Effects of bone marrow-derived mononuclear cells on airway and lung parench- yma remodeling in a murine model of chronic allergic inflammation. Respir Physiol Neurobiol. 2010;175:153–63.

    Article  PubMed  CAS  Google Scholar 

  34. Lee JW, et al. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells. 2011;29:913–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiss DJ, et al. Stem cells and cell therapies in lung biology and diseases: conference report. Ann Am Thorac Soc. 2013;10(5):S25–44.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cargnoni A, et al. Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice-specificity of the effects and insights into possible mechanisms. Cytotherapy. 2014;16(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  37. Ratajczak MZ, et al. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia. 2011;26:1166.

    Article  PubMed  CAS  Google Scholar 

  38. Tzouvelekis A, Antoniadis A, Bouros D. Stem cell therapy in pulmonary fibrosis. Curr Opin Pulm Med. 2011;17(5):368–73.

    Article  PubMed  Google Scholar 

  39. Carraro G, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kardia E, Halim NSSA, Yahaya BH. Aerosol-based cell therapy for treatment of lung diseases. In: Turksen K, editor. Stem cell heterogeneity. Methods in molecular biology. New York: Humana Press; 2016.

    Google Scholar 

  41. Kim SY, et al. Atomized human amniotic mesenchymal stromal cells for direct delivery to the airway for treatment of lung injury. J Aerosol Med Pulm Drug Deliv. 2016;29(6):514–24.

    Article  CAS  PubMed  Google Scholar 

  42. Sosnowski T, et al. Spraying of cell colloids in medical atomizers. AIDIC Conference Series. 2013;11:371–80.

    Google Scholar 

  43. Xin H, et al. Intratracheal delivery of CX3CL1-expressing mesenchymal stem cells to multiple lung tumors. Mol Med. 2009;15(9–10):321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chimenti L, et al. Pre-treatment with mesenchymal stem cells reduces ventilator-induced lung injury. Eur Respir J. 2012;40(4):939–48.

    Article  PubMed  Google Scholar 

  45. Chang YS, et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells dose-dependently attenuates hyperoxia-induced lung injury in neonatal rats. Cell Transplant. 2011;20:1843–54.

    Article  PubMed  Google Scholar 

  46. Kim ES, et al. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res. 2011;12:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cappetta D, et al. Lung Mesenchymal stem cells ameliorate Elastase-induced damage in an animal model of emphysema. Stem Cells Int. 2018;2018:10.

    Article  CAS  Google Scholar 

  48. Matthay M, Thompson BT, Read EJ. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest. 2010;138:965–72.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gupta N, et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol. 2007;179:1855–63.

    Article  CAS  PubMed  Google Scholar 

  50. Rojas M, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33(2):145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee JW, et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A. 2009;106(38):16357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guillamat-Prats R, et al. Intratracheal instillation of alveolar type II cells enhances recovery from acute lung injury in rats. J Heart Lung Transplant. 2018;37(6):782–91.

    Article  PubMed  Google Scholar 

  53. Guillamat-Prats R, et al. Effect of the alveolar type ii cells transplantation for the treatment of acute lung injury. Intensive Care Med Exp. 2015;3(1):A803.

    Article  PubMed Central  Google Scholar 

  54. Yahaya BH. Aerosol-based cell delivery as an innovative treatment for lung diseases. Biomed Res Ther. 2017;4:S41.

    Article  Google Scholar 

  55. Polak DJ. The use of stem cells to repair the injured lung. Br Med Bull. 2011;99:189–97.

    Article  PubMed  Google Scholar 

  56. Robertson SN, et al. Control of cell behaviour through nanovibrational stimulation: nanokicking. Philos Trans R Soc A Math Phys Eng Sci. 2018;376(2120):20170290.

    Article  CAS  Google Scholar 

  57. Engler AJ, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  58. Pemberton GD, et al. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking. Nanomedicine. 2015;10(4):547–60.

    Article  CAS  PubMed  Google Scholar 

  59. King JA, Miller WM. Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol. 2007;11(4):394–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chrzanowski W, et al. Nano-bio-chemical braille for cells: the regulation of stem cell responses using bi-functional surfaces. Adv Funct Mater. 2015;25(2):193–205.

    Article  CAS  Google Scholar 

  61. Grayson WL, et al. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006;207(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  62. Davies LA, et al. Enhanced lung gene expression after aerosol delivery of concentrated pDNA/PEI complexes. Mol Ther. 2008;16(7):1283–90.

    Article  CAS  PubMed  Google Scholar 

  63. Kardia E, et al. Aerosol-based delivery of fibroblast cells for treatment of lung diseases. J Aerosol Med Pulm Drug Deliv. 2014;27(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  64. Hendriks J, et al. Optimizing cell viability in droplet-based cell deposition. Sci Rep. 2015;5:11304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Visser CW, et al. Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter. 2015;11(9):1708–22.

    Article  CAS  PubMed  Google Scholar 

  66. Mohd Zin NK, et al. Induced pluripotent stem cell differentiation under constant shear stress, in 7th WACBE world congress on bioengineering 2015. In: Goh J, Lim C, editors. IFMBE proceedings. New York: Springer: Cham; 2015.

    Google Scholar 

  67. Thiebes AL, et al. Spraying respiratory epithelial cells to coat tissue-engineered constructs. Biores Open Access. 2015;4(1):278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnstone P, et al. Successful application of keratinocyte suspension using autologous fibrin spray. Burns. 2017;43(3):e27–30.

    Article  PubMed  Google Scholar 

  69. Kirsner RS, et al. Spray-applied cell therapy with human allogeneic fibroblasts and keratinocytes for the treatment of chronic venous leg ulcers: a phase 2, multicentre, double-blind, randomised, placebo-controlled trial. Lancet. 2012;380(9846):977–85.

    Article  PubMed  Google Scholar 

  70. Skolasinski S, et al. Lung bioengineering and direct pulmonary cell therapy using a novel airway spray device. In: D110. Epithelial function in health and disease. New York: American Thoracic Society; 2018. p. A7634.

    Google Scholar 

  71. Koen D, et al. Arthroscopic airbrush-assisted cell spraying for cartilage repair: design, development, and characterization of custom-made arthroscopic spray nozzles. Tissue Eng Part C Methods. 2017;23(9):505–15.

    Article  CAS  Google Scholar 

  72. de Windt TS, et al. Arthroscopic airbrush assisted cell implantation for cartilage repair in the knee: a controlled laboratory and human cadaveric study. Osteoarthr Cartil. 2015;23(1):143–50.

    Article  Google Scholar 

  73. Esteban-Vives R, et al. Second-degree burns with six etiologies treated with autologous noncultured cell-spray grafting. Burns. 2016;42(7):e99–e106.

    Article  PubMed  Google Scholar 

  74. Wood FM, et al. Characterisation of the cell suspension harvested from the dermal epidermal junction using a ReCell® kit. Burns. 2012;38(1):44–51.

    Article  PubMed  Google Scholar 

  75. Cortez-Jugo C, et al. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. Biomicrofluidics. 2015;9(5):052603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rajapaksa AE, et al. Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization. Respir Res. 2014;15:60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Thiebes AL, et al. Flexible endoscopic spray application of respiratory epithelial cells as platform technology to apply cells in tubular organs. Tissue Eng Part C Methods. 2016;22(4):322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells. 2008;1:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Qin SQ, et al. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta. Placenta. 2016;39:134–46.

    Article  CAS  PubMed  Google Scholar 

  80. Kim J, et al. Controlled delivery and minimally invasive imaging of stem cells in the lung. Sci Rep. 2017;7(1):13082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Duncan CO, et al. In vitro transfer of keratinocytes: comparison of transfer from fibrin membrane and delivery by aerosol spray. J Biomed Mater Res B Appl Biomater. 2005;73(2):221–8.

    Article  PubMed  CAS  Google Scholar 

  82. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Crop MJ, et al. Inflammatory conditions after gene expression and function affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clin Exp Immunol. 2010;162:474–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Spaggiari GM, et al. Mesenchymal stem cell-natural killer cell inter- actions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107:1484–90.

    Article  CAS  PubMed  Google Scholar 

  85. Liu XB, et al. Angiopoietin-I preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B. 2012;13:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Roemeling-van Rhijn M, et al. Human bone marrow- and adipose tissue-derived Mesenchymal stromal cells are immunosuppressive in vitro and in a humanized allograft rejection model. J Stem Cell Res Ther. 2013;6(1):20780.

    PubMed  Google Scholar 

  87. Nobis M, et al. Molecular mobility and activity in an intravital imaging setting – implications for cancer progression and targeting. J Cell Sci. 2018;131(5):jcs206995.

    Article  PubMed  CAS  Google Scholar 

  88. Lefrancais E, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017;544(7648):105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McElroy MC, Kasper M. The use of alveolar epithelial type I cell-selective markers to investigate lung injury and repair. Eur Respir J. 2004;24(4):664–73.

    Article  CAS  PubMed  Google Scholar 

  90. Uhl FE, Wagner DE, Weiss DJ. Preparation of Decellularized lung matrices for cell culture and protein analysis. Methods Mol Biol. 2017;1627:253–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Young BM, et al. Decellularized lung matrices and tissue engineered lungs. In: Hickey AJ, da Rocha SR, editors. pharmaceutical inhalation aerosol technology. Boca Raton: CRC Press; 2019.

    Google Scholar 

  92. Daly AB, et al. Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells. Tissue Eng Part A. 2012;18(1–2):1–16.

    Article  CAS  PubMed  Google Scholar 

  93. Wallis JM, et al. Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods. 2012;18(6):420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fischer AH, et al. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc. 2008;2008(5):pdb.prot4986.

    Google Scholar 

  95. Seger S, et al. A fully automated image analysis method to quantify lung fibrosis in the bleomycin-induced rat model. PLoS One. 2018;13(3):e0193057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhou X, Moore BB. Lung section staining and microscopy. Bio Protoc. 2017;7(10):e2286.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Qiao J, et al. Pulmonary fibrosis induced by H5N1 viral infection in mice. Respir Res. 2009;10(1):107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Patil JS, Sarasija S. Pulmonary drug delivery strategies: a concise, systematic review. Lung India. 2012;29(1):44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chao C. Intratracheal umbilical cord-derived Mesenchymal stem cell for the treatment of Bronchopulmonary dysplasia (BPD) (IUMTB). In: ClinicalTrials.Gov. China: C.s.H.o.F. University; 2018.

    Google Scholar 

  100. Ren Z, Yang J. The treatment of Bronchopulmonary dysplasia by Intratracheal instillation of Mesenchymal stem cells. China: G.W.a.C. Hospital; 2018.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Professor Daniel Weiss for his expertise and guidance in the decellularisation model. The cell transfection and bioluminescence imaging were made possible through the expertise provided by Dr. Yuen Chung and Dr. Yiwei Wang. WCh acknowledges the University of Sydney for a SOAR Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Chrzanowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, S.Y., Chrzanowski, W. (2019). Stem Cell Delivery Systems and Devices - Spraying. In: Burgess, J., Heijink, I. (eds) Stem Cell-Based Therapy for Lung Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-29403-8_13

Download citation

Publish with us

Policies and ethics