Skip to main content

CityFlow: Supporting Spatial-Temporal Edge Computing for Urban Machine Learning Applications

  • Conference paper
  • First Online:

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

A growing trend in smart cities is the use of machine learning techniques to gather city data, formulate learning tasks and models, and use these to develop solutions to city problems. However, although these processes are sufficient for theoretical experiments, they often fail when they meet the reality of city data and processes, which by their very nature are highly distributed, heterogeneous, and exhibit high degrees of spatial and temporal variance. In order to address those problems, we have designed and implemented an integrated development environment called CityFlow that supports developing machine learning applications. With CityFlow, we can develop, deploy, and maintain machine learning applications easily by using an intuitive data flow model. To verify our approach, we conducted two case studies: deploying a road damage detection application to help monitor transport infrastructure and an automatic labeling application in support of a participatory sensing application. These applications show both the generic applicability of our approach, and its ease of use; both critical if we wish to deploy sophisticated ML based applications to smart cities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://cloud.google.com/blog/products/gcp/how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow.

  2. 2.

    http://soramame.taiki.go.jp/.

References

  1. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J 15(2), 121–142 (2006)

    Article  Google Scholar 

  2. Araújo, A., Kalebe, R., Giraõ, G., Gonçalves, K., Neto, B., et al.: Reliability analysis of an IoT-based smart parking application for smart cities. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4086–4091. IEEE, Piscataway (2017)

    Google Scholar 

  3. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Giang, N.K., Lea, R., Leung, V.C.M.: Exogenous coordination for building fog-based cyber physical social computing and networking systems. IEEE Access 6, 31740–31749 (2018). https://doi.org/10.1109/ACCESS.2018.2844336

    Article  Google Scholar 

  5. Giang, N.K., Lea, R., Blackstock, M., Leung, V.C.M.: Fog at the edge: experiences building an edge computing platform. In: 2018 IEEE International Conference on Edge Computing (EDGE) (2018)

    Google Scholar 

  6. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017). Preprint arXiv:1704.04861

    Google Scholar 

  7. Huynh, L.N., Lee, Y., Balan, R.K.: DeepMon: mobile GPU-based deep learning framework for continuous vision applications. In: Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, pp. 82–95. ACM, New York (2017)

    Google Scholar 

  8. Imamura, H., Sato, I., Sugiyama, M.: Analysis of minimax error rate for crowdsourcing and its application to worker clustering model (2018). Preprint arXiv:1802.04551

    Google Scholar 

  9. Kawano, M., Mikami, K., Yokoyama, S., Yonezawa, T., Nakazawa, J.: Road marking blur detection with drive recorder. In: 2017 IEEE International Conference on Big Data (Big Data), Dec 2017, pp. 4092–4097 (2017)

    Google Scholar 

  10. Lane, N.D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L., Qendro, L., Kawsar, F.: DeepX: a software accelerator for low-power deep learning inference on mobile devices. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks, p. 23. IEEE Press, Piscataway (2016)

    Google Scholar 

  11. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  12. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Inference 90(2), 227–244 (2000)

    Article  MathSciNet  Google Scholar 

  13. Sugiyama, M., Kawanabe, M.: Machine Learning in Non-stationary Environments: Introduction to Covariate Shift Adaptation. MIT Press, Cambridge (2012)

    Book  Google Scholar 

  14. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S., Jackson, J., Gade, K., Fu, M., Donham, J., et al.: Storm@ twitter. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 147–156. ACM, New York (2014)

    Google Scholar 

  15. Xin, D., Ma, L., Liu, J., Macke, S., Song, S., Parameswaran, A.: HELIX: accelerating human-in-the-loop machine learning. Proc. VLDB Endow. 11(12), 1958–1961 (2018)

    Article  Google Scholar 

  16. Yonezawa, T., Ito, T., Nakazawa, J., Tokuda, H.: SOXFire: a universal sensor network system for sharing social big sensor data in smart cities. In: Proceedings of the 2nd International Workshop on Smart, p. 2. ACM, New York (2016)

    Google Scholar 

  17. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters. In: HotCloud ’12 (2012)

    Google Scholar 

  18. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps trajectories. In: Proceedings of the 18th International Conference on World Wide Web, pp. 791–800. ACM, New York (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institute of Information and Communications Technology and in part by H2020-EUJ-2016 EU-Japan joint research project, BigClouT (Grant Agreement No 723139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kawano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawano, M. et al. (2020). CityFlow: Supporting Spatial-Temporal Edge Computing for Urban Machine Learning Applications. In: José, R., Van Laerhoven, K., Rodrigues, H. (eds) 3rd EAI International Conference on IoT in Urban Space. Urb-IoT 2018. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-28925-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28925-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28924-9

  • Online ISBN: 978-3-030-28925-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics