Skip to main content

Molecular Profiling of IBD Subtypes and Therapy Responses

  • Chapter
  • First Online:
Book cover Molecular Genetics of Inflammatory Bowel Disease

Abstract

Inflammatory bowel disease is a heterogeneous disorder in terms of severity of inflammation, disease progression, and response to treatment. This implicates difficulties for clinical management of the disease. Tools for a precision medicine approach with optimized diagnosis and disease management and cost-effective treatment strategies and less adverse events are indeed eagerly awaited. Molecular profiling could help in this regard. To date, however, molecular profiling of disease progression and treatment responses has lingered behind in the management of inflammatory bowel disease. Still, thanks to technological advances and optimized study designs, predicting phenotypes of inflammatory bowel disease by molecular profiling using different types of omics has been rapidly evolving. In this chapter, we summarize the current status of prediction of disease progression, response to therapy, and adverse events in inflammatory bowel disease to highlight the recent progress made in molecular profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silverberg MS et al (2005) Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 19(Suppl A):5A–36A

    Article  PubMed  Google Scholar 

  2. Louis E et al (2001) Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut 49:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cosnes J et al (2002) Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis 8:244–250

    Article  PubMed  Google Scholar 

  4. Solberg IC et al (2009) Clinical course during the first 10 years of ulcerative colitis: results from a population-based inception cohort (IBSEN Study). Scand J Gastroenterol 44:431–440

    Article  PubMed  Google Scholar 

  5. Beaugerie L, Seksik P, Nion-Larmurier I, Gendre JP, Cosnes J (2006) Predictors of Crohn’s disease. Gastroenterology 130:650–656

    Article  PubMed  Google Scholar 

  6. Loly C, Belaiche J, Louis E (2008) Predictors of severe Crohn’s disease. Scand J Gastroenterol 43:948–954

    Article  CAS  PubMed  Google Scholar 

  7. Tarrant KM, Barclay ML, Frampton CM, Gearry RB (2008) Perianal disease predicts changes in Crohn’s disease phenotype-results of a population-based study of inflammatory bowel disease phenotype. Am J Gastroenterol 103:3082–3093

    Article  PubMed  Google Scholar 

  8. Thia KT, Sandborn WJ, Harmsen WS, Zinsmeister AR, Loftus EV Jr (2010) Risk factors associated with progression to intestinal complications of Crohn’s disease in a population-based cohort. Gastroenterology 139:1147–1155

    Article  PubMed  Google Scholar 

  9. Fumery M et al (2019) Long-term outcome of pediatric-onset Crohn’s disease: a population-based cohort study. Dig Liver Dis 51:496–502

    Article  PubMed  Google Scholar 

  10. Allez M et al (2002) Long term outcome of patients with active Crohn’s disease exhibiting extensive and deep ulcerations at colonoscopy. Am J Gastroenterol 97:947–953

    PubMed  Google Scholar 

  11. Peyrin-Biroulet L et al (2011) Impact of azathioprine and tumour necrosis factor antagonists on the need for surgery in newly diagnosed Crohn’s disease. Gut 60:930–936

    Article  CAS  PubMed  Google Scholar 

  12. Lakatos PL et al (2012) Has there been a change in the natural history of Crohn’s disease? Surgical rates and medical management in a population-based inception cohort from Western Hungary between 1977–2009. Am J Gastroenterol 107:579–588

    Article  CAS  PubMed  Google Scholar 

  13. Kugathasan S et al (2017) Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet 389:1710–1718

    Article  PubMed  PubMed Central  Google Scholar 

  14. Satsangi J, Silverberg MS, Vermeire S, Colombel JF (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55:749–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomollon F et al (2017) 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J Crohns Colitis 11:3–25

    Article  PubMed  Google Scholar 

  16. Magro F et al (2017) Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J Crohns Colitis 11:649–670

    Article  PubMed  Google Scholar 

  17. Arnott ID et al (2004) Sero-reactivity to microbial components in Crohn’s disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am J Gastroenterol 99:2376–2384

    Article  PubMed  Google Scholar 

  18. Mow WS et al (2004) Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology 126:414–424

    Article  CAS  PubMed  Google Scholar 

  19. Targan SR et al (2005) Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology 128:2020–2028

    Article  CAS  PubMed  Google Scholar 

  20. Ferrante M et al (2007) New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut 56:1394–1403

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dubinsky MC et al (2006) Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol 101:360–367

    Article  PubMed  PubMed Central  Google Scholar 

  22. Siegel CA et al (2016) A validated web-based tool to display individualised Crohn’s disease predicted outcomes based on clinical, serologic and genetic variables. Aliment Pharmacol Ther 43:262–271

    Article  CAS  PubMed  Google Scholar 

  23. Bertha M et al (2018) IBD serology and disease outcomes in African Americans with Crohn’s disease. Inflamm Bowel Dis 24:209–216

    Article  Google Scholar 

  24. Andersson E et al (2017) Subphenotypes of inflammatory bowel disease are characterized by specific serum protein profiles. PLoS One 12:e0186142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kalla R et al (2015) P140 proximity extension assay technology identifies novel serum biomarkers for predicting inflammatory bowel disease: IBD character consortium. J Crohns Colitis 9:S146–S147

    Google Scholar 

  26. Kalla R et al (2016) DOP082 proximity extension assay immunoassay technology identifies novel serum biomarkers that can diagnose and classify inflammatory bowel diseases: IBD character consortium. J Crohns Colitis 10:S82–S82

    Google Scholar 

  27. Kalla R et al (2017) OP022 proximity extension assay based proteins show immune cell specificity and can diagnose and predict outcomes in inflammatory bowel diseases: IBD character study. J Crohns Colitis 11:S13–S13

    Article  Google Scholar 

  28. Liu JZ et al (2015) Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47:979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Lange KM et al (2017) Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet 49:256–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Abreu MT et al (2002) Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 123:679–688

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad T et al (2002) The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 122:854–866

    Article  CAS  PubMed  Google Scholar 

  32. Seiderer J et al (2006) Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn’s disease with ileal stenosis, entero-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. Scand J Gastroenterol 41:1421–1432

    Article  CAS  PubMed  Google Scholar 

  33. Alonso A et al (2015) Identification of risk loci for Crohn’s disease phenotypes using a genome-wide association study. Gastroenterology 148:794–805

    Article  CAS  PubMed  Google Scholar 

  34. Cleynen I et al (2013) Genetic factors conferring an increased susceptibility to develop Crohn’s disease also influence disease phenotype: results from the IBDchip European Project. Gut 62:1556–1565

    Article  CAS  PubMed  Google Scholar 

  35. Cleynen I et al (2016) Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387:156–167

    Article  PubMed  PubMed Central  Google Scholar 

  36. Prescott NJ et al (2007) A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology 132:1665–1671

    Article  CAS  PubMed  Google Scholar 

  37. Henckaerts L et al (2009) Genetic risk profiling and prediction of disease course in Crohn’s disease patients. Clin Gastroenterol Hepatol 7:972–980 e972

    Article  CAS  PubMed  Google Scholar 

  38. Lee JC et al (2017) Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet 49:262–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Visschedijk MC et al (2018) Genomic and expression analyses identify a disease-modifying variant for fibrostenotic Crohn’s disease. J Crohns Colitis 12:582–588

    Article  PubMed  Google Scholar 

  40. Kopylov U et al (2016) Genetic predictors of benign course of ulcerative colitis-a North American inflammatory bowel disease genetics consortium study. Inflamm Bowel Dis 22:2311–2316

    Article  PubMed  Google Scholar 

  41. Lee HS et al (2018) An intergenic variant rs9268877 between HLA-DRA and HLA-DRB contributes to the clinical course and long-term outcome of ulcerative colitis. J Crohns Colitis 12:1113–1121

    PubMed  Google Scholar 

  42. Weersma RK et al (2009) Molecular prediction of disease risk and severity in a large Dutch Crohn’s disease cohort. Gut 58:388–395

    Article  CAS  PubMed  Google Scholar 

  43. Jakobsen C et al (2014) Genetic susceptibility and genotype–phenotype association in 588 Danish children with inflammatory bowel disease. J Crohns Colitis 8:678–685

    Article  CAS  PubMed  Google Scholar 

  44. Ananthakrishnan AN et al (2014) Differential effect of genetic burden on disease phenotypes in Crohn’s disease and ulcerative colitis: analysis of a North American cohort. Am J Gastroenterol 109:395–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen GB et al (2017) Performance of risk prediction for inflammatory bowel disease based on genotyping platform and genomic risk score method. BMC Med Genet 18:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lee JC et al (2011) Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 121:4170–4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKinney EF et al (2010) A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat Med 16:586–591, 581 p following 591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Biasci D et al (2019) A blood-based prognostic biomarker in IBD. Gut 68:1386–1395

    Article  CAS  PubMed  Google Scholar 

  49. Parkes M et al (2018) PRedicting outcomes for Crohn’s dIsease using a moLecular biomarkEr (PROFILE): protocol for a multicentre, randomised, biomarker-stratified trial. BMJ Open 8:e026767

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marigorta UM et al (2017) Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn’s disease. Nat Genet 49:1517–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haberman Y et al (2019) Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat Commun 10:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Verstockt S et al (2019) Gene and Mirna regulatory networks during different stages of Crohn’s disease. J Crohns Colitis 13:916–930

    Article  PubMed  Google Scholar 

  53. Cushing KC et al (2019) Predicting risk of postoperative disease recurrence in Crohn’s disease: patients with indolent Crohn’s disease have distinct whole transcriptome profiles at the time of first surgery. Inflamm Bowel Dis 25:180–193

    Article  PubMed  Google Scholar 

  54. Uniken Venema WT et al (2019) Single-cell RNA sequencing of blood and ileal T cells from patients with Crohn’s disease reveals tissue-specific characteristics and drug targets. Gastroenterology 156:812–815 e822

    Article  CAS  PubMed  Google Scholar 

  55. Gonczi L et al (2017) Prediction of short- and medium-term efficacy of biosimilar infliximab therapy. Do trough levels and antidrug antibody levels or clinical and biochemical markers play the more important role? J Crohns Colitis 11:697–705

    Article  PubMed  Google Scholar 

  56. Reinisch W et al (2015) Factors associated with short- and long-term outcomes of therapy for Crohn’s disease. Clin Gastroenterol Hepatol 13:539–547 e532

    Article  PubMed  Google Scholar 

  57. Billiet T et al (2015) A matrix-based model predicts primary response to infliximab in Crohn’s disease. J Crohns Colitis 9:1120–1126

    Article  PubMed  Google Scholar 

  58. Esters N et al (2004) Transmission of CARD15 (NOD2) variants within families of patients with inflammatory bowel disease. Am J Gastroenterol 99:299–305

    Article  CAS  PubMed  Google Scholar 

  59. Taylor KD et al (2001) ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn’s disease. Gastroenterology 120:1347–1355

    Article  CAS  PubMed  Google Scholar 

  60. Kushner I (1990) C-reactive protein and the acute-phase response. Hosp Pract (Off Ed) 25:13–16, 21–18.

    Article  CAS  Google Scholar 

  61. Tall AR (2004) C-reactive protein reassessed. N Engl J Med 350:1450–1452

    Article  CAS  PubMed  Google Scholar 

  62. Vermeire S, Van Assche G, Rutgeerts P (2005) The role of C-reactive protein as an inflammatory marker in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol 2:580–586

    Article  CAS  PubMed  Google Scholar 

  63. Vermeire S, Van Assche G, Rutgeerts P (2006) Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut 55:426–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jurgens M et al (2011) Levels of C-reactive protein are associated with response to infliximab therapy in patients with Crohn’s disease. Clin Gastroenterol Hepatol 9:421–427 e421

    Article  PubMed  CAS  Google Scholar 

  65. D’Haens G et al (2018) Increasing infliximab dose based on symptoms, biomarkers, and serum drug concentrations does not increase clinical, endoscopic, and corticosteroid-free remission in patients with active luminal Crohn’s disease. Gastroenterology 154:1343–1351.e1341

    Article  PubMed  CAS  Google Scholar 

  66. Korf H et al (2017) DOP050 Serum proteomic analysis defines novel circulating inflammatory markers for Crohn’s disease and response to anti-TNF therapy. J Crohns Colitis 11:S56–S57

    Article  Google Scholar 

  67. Van Cutsem E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  68. Faubion WA Jr, Loftus EV Jr, Harmsen WS, Zinsmeister AR, Sandborn WJ (2001) The natural history of corticosteroid therapy for inflammatory bowel disease: a population-based study. Gastroenterology 121:255–260

    Article  CAS  PubMed  Google Scholar 

  69. Munkholm P, Langholz E, Davidsen M, Binder V (1994) Frequency of glucocorticoid resistance and dependency in Crohn’s disease. Gut 35:360–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gabryel M, Skrzypczak-Zielinska M, Kucharski MA, Slomski R, Dobrowolska A (2016) The impact of genetic factors on response to glucocorticoids therapy in IBD. Scand J Gastroenterol 51:654–665

    Article  CAS  PubMed  Google Scholar 

  71. Farrell RJ et al (2000) High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology 118:279–288

    Article  CAS  PubMed  Google Scholar 

  72. Brant SR et al (2003) MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet 73:1282–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ho GT et al (2005) Allelic variations of the multidrug resistance gene determine susceptibility and disease behavior in ulcerative colitis. Gastroenterology 128:288–296

    Article  CAS  PubMed  Google Scholar 

  74. Potocnik U, Ferkolj I, Glavac D, Dean M (2004) Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis. Genes Immun 5:530–539

    Article  CAS  PubMed  Google Scholar 

  75. Cucchiara S et al (2007) Polymorphisms of tumor necrosis factor-alpha but not MDR1 influence response to medical therapy in pediatric-onset inflammatory bowel disease. J Pediatr Gastroenterol Nutr 44:171–179

    Article  CAS  PubMed  Google Scholar 

  76. Griga T et al (2007) A polymorphism in the macrophage migration inhibitory factor gene is involved in the genetic predisposition of Crohn’s disease and associated with cumulative steroid doses. Hepato-Gastroenterology 54:784–786

    CAS  PubMed  Google Scholar 

  77. Mascheretti S et al (2002) Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn’s disease treated with infliximab. Pharmacogenomics J 2:127–136

    Article  CAS  PubMed  Google Scholar 

  78. Pierik M et al (2004) Tumour necrosis factor-alpha receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment Pharmacol Ther 20:303–310

    Article  CAS  PubMed  Google Scholar 

  79. Billiet T et al (2016) A genetic variation in the neonatal Fc-receptor affects anti-TNF drug concentrations in inflammatory bowel disease. Am J Gastroenterol 111:1438–1445

    Article  CAS  PubMed  Google Scholar 

  80. Louis EJ et al (2006) Polymorphism in IgG Fc receptor gene FCGR3A and response to infliximab in Crohn’s disease: a subanalysis of the ACCENT I study. Pharmacogenet Genomics 16:911–914

    Article  CAS  PubMed  Google Scholar 

  81. Louis E et al (2004) Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment Pharmacol Ther 19:511–519

    Article  CAS  PubMed  Google Scholar 

  82. Vermeire S et al (2002) NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology 123:106–111

    Article  CAS  PubMed  Google Scholar 

  83. Mascheretti S et al (2002) Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics 12:509–515

    Article  CAS  PubMed  Google Scholar 

  84. Hlavaty T et al (2005) Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn’s disease. Aliment Pharmacol Ther 22:613–626

    Article  CAS  PubMed  Google Scholar 

  85. Bek S et al (2016) Systematic review: genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases. Aliment Pharmacol Ther 44:554–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jostins L et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dubinsky MC et al (2010) Genome wide association (GWA) predictors of anti-TNFα therapeutic responsiveness in pediatric inflammatory bowel disease. Inflamm Bowel Dis 16:1357–1366

    Article  PubMed  Google Scholar 

  88. Barber GE et al (2016) Genetic markers predict primary non-response and durable response to anti-TNF biologic therapies in Crohn’s disease. Am J Gastroenterol 111:1816–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tantisira KG et al (2011) Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med 365:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vande Casteele N, Gils A (2015) Pharmacokinetics of anti-TNF monoclonal antibodies in inflammatory bowel disease: adding value to current practice. J Clin Pharmacol 55(Suppl 3):S39–S50

    Article  CAS  PubMed  Google Scholar 

  91. Dreesen E, Gils A, Vermeire S (2018) Pharmacokinetic modeling and simulation of biologicals in inflammatory bowel disease: the dawning of a new era for personalized treatment. Curr Drug Targets 19:757–776

    Article  CAS  PubMed  Google Scholar 

  92. Weber F et al (2012) Single-nucleotide polymorphisms in HLA- and non-HLA genes associated with the development of antibodies to interferon-beta therapy in multiple sclerosis patients. Pharmacogenomics J 12:238–245

    Article  CAS  PubMed  Google Scholar 

  93. Billiet T et al (2015) Immunogenicity to infliximab is associated with HLA-DRB1. Gut 64:1344–1345

    Article  CAS  PubMed  Google Scholar 

  94. Sazonovs A et al (2018) OP013 HLA-DQA1 contributes to the development of antibodies to anti-TNF therapy in Crohn’s disease. J Crohns Colitis 12:S009–S010

    Article  Google Scholar 

  95. Bamberger CM, Bamberger AM, de Castro M, Chrousos GP (1995) Glucocorticoid receptor beta, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 95:2435–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Honda M et al (2000) Expression of glucocorticoid receptor beta in lymphocytes of patients with glucocorticoid-resistant ulcerative colitis. Gastroenterology 118:859–866

    Article  CAS  PubMed  Google Scholar 

  97. Fujishima S, Takeda H, Kawata S, Yamakawa M (2009) The relationship between the expression of the glucocorticoid receptor in biopsied colonic mucosa and the glucocorticoid responsiveness of ulcerative colitis patients. Clin Immunol 133:208–217

    Article  CAS  PubMed  Google Scholar 

  98. Hausmann M, Herfarth H, Scholmerich J, Rogler G (2007) Glucocorticoid receptor isoform expression does not predict steroid treatment response in IBD. Gut 56:1328–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arijs I et al (2009) Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58:1612–1619

    Article  CAS  PubMed  Google Scholar 

  100. Arijs I et al (2010) Predictive value of epithelial gene expression profiles for response to infliximab in Crohn’s disease. Inflamm Bowel Dis 16:2090–2098

    Article  PubMed  Google Scholar 

  101. Verstockt B et al (2019) Mucosal IL13RA2 expression predicts nonresponse to anti-TNF therapy in Crohn’s disease. Aliment Pharmacol Ther 49:572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Verstockt B et al (2019) Low TREM1 expression in whole blood predicts anti-TNF response in inflammatory bowel disease. EBioMedicine 40:733–742

    Article  PubMed  PubMed Central  Google Scholar 

  103. West NR et al (2017) Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med 23:579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schmitt H et al (2019) Expansion of IL-23 receptor bearing TNFR2+ T cells is associated with molecular resistance to anti-TNF therapy in Crohn’s disease. Gut 68:814–828

    Article  CAS  PubMed  Google Scholar 

  105. Gaujoux R et al (2019) Cell-centred meta-analysis reveals baseline predictors of anti-TNFα non-response in biopsy and blood of patients with IBD. Gut 68:604–614

    Article  CAS  PubMed  Google Scholar 

  106. Verstockt B et al (2019) TREM-1, the ideal predictive biomarker for endoscopic healing in anti-TNF-treated Crohn’s disease patients? Gut 68:1531–1533

    Article  PubMed  CAS  Google Scholar 

  107. Tew GW et al (2016) Association between response to etrolizumab and expression of integrin αE and granzyme A in Colon biopsies of patients with ulcerative colitis. Gastroenterology 150:477–487

    Article  PubMed  Google Scholar 

  108. Arijs I et al (2018) Effect of vedolizumab (anti-alpha4beta7-integrin) therapy on histological healing and mucosal gene expression in patients with UC. Gut 67:43–52

    Article  CAS  PubMed  Google Scholar 

  109. Verstockt B et al (2018) Effects of epithelial IL-13Ralpha2 expression in inflammatory bowel disease. Front Immunol 9:2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Strober W, Kitani A, Fichtner-Feigl S, Fuss IJ (2009) The signaling function of the IL-13Ralpha2 receptor in the development of gastrointestinal fibrosis and cancer surveillance. Curr Mol Med 9:740–750

    Article  CAS  PubMed  Google Scholar 

  111. Telesco SE et al (2018) Gene expression signature for prediction of golimumab response in a phase 2a Open-label trial of patients with ulcerative colitis. Gastroenterology 155:1008–1011 e1008

    Article  CAS  PubMed  Google Scholar 

  112. Vermeire S et al (2014) Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet 384:309–318

    Article  CAS  PubMed  Google Scholar 

  113. Heap GA et al (2016) Clinical features and HLA association of 5-aminosalicylate (5-ASA)-induced nephrotoxicity in inflammatory bowel disease. J Crohns Colitis 10:149–158

    Article  PubMed  Google Scholar 

  114. Weinshilboum RM, Sladek SL (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32:651–662

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Moriyama T et al (2016) NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 48:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Colombel JF et al (2000) Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 118:1025–1030

    Article  CAS  PubMed  Google Scholar 

  117. Cuffari C, Hunt S, Bayless T (2001) Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut 48:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dubinsky MC et al (2002) 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 122:904–915

    Article  CAS  PubMed  Google Scholar 

  119. Schwab M et al (2001) Shortcoming in the diagnosis of TPMT deficiency in a patient with Crohn’s disease using phenotyping only. Gastroenterology 121:498–499

    Article  CAS  PubMed  Google Scholar 

  120. Yang SK et al (2014) A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46:1017–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Asada A et al (2016) NUDT15 R139C-related thiopurine leukocytopenia is mediated by 6-thioguanine nucleotide-independent mechanism in Japanese patients with inflammatory bowel disease. J Gastroenterol 51:22–29

    Article  CAS  PubMed  Google Scholar 

  122. Zhu X et al (2016) NUDT15 polymorphisms are better than thiopurine S-methyltransferase as predictor of risk for thiopurine-induced leukopenia in Chinese patients with Crohn’s disease. Aliment Pharmacol Ther 44:967–975

    Article  CAS  PubMed  Google Scholar 

  123. Walker GJ et al (2019) Association of genetic variants in NUDT15 with thiopurine-induced myelosuppression in patients with inflammatory bowel disease. JAMA 321:773–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim HS et al (2017) A coding variant in FTO confers susceptibility to thiopurine-induced leukopenia in East Asian patients with IBD. Gut 66:1926–1935

    Article  CAS  PubMed  Google Scholar 

  125. Li D, McGovern J, Haritunians T, Daly MJ, McGovern D (2018) Sa1702 – novel insights on thiopurine induced leukopenia and pancreatitis from whole-exome sequencing (Wes) of 1,321 inflammatory bowel diseases (IBD) patients. Gastroenterology 154:S-361–S-362

    Article  Google Scholar 

  126. Heap GA et al (2014) HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nat Genet 46:1131–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wilson A et al (2018) HLA-DQA1-HLA-DRB1 polymorphism is a major predictor of azathioprine-induced pancreatitis in patients with inflammatory bowel disease. Aliment Pharmacol Ther 47:615–620

    Article  CAS  PubMed  Google Scholar 

  128. Cleynen I et al (2016) Characteristics of skin lesions associated with anti-tumor necrosis factor therapy in patients with inflammatory bowel disease: a cohort study. Ann Intern Med 164:10–22

    Article  PubMed  Google Scholar 

  129. Tillack C et al (2014) Anti-TNF antibody-induced psoriasiform skin lesions in patients with inflammatory bowel disease are characterised by interferon-γ-expressing Th1 cells and IL-17A/IL-22-expressing Th17 cells and respond to anti-IL-12/IL-23 antibody treatment. Gut 63:567–577

    Article  CAS  PubMed  Google Scholar 

  130. Weersma RK, Xavier RJ, IBD Multi Omics Consortium, Vermeire S, Barrett JC (2018) Multiomics analyses to deliver the most effective treatment to every patient with inflammatory bowel disease. Gastroenterology 155:e1–e4

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Cleynen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, HS., Cleynen, I. (2019). Molecular Profiling of IBD Subtypes and Therapy Responses. In: Hedin, C., Rioux, J., D'Amato, M. (eds) Molecular Genetics of Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-28703-0_8

Download citation

Publish with us

Policies and ethics