Skip to main content

Genetic Determinants Affecting the Relationship Between the Autonomic Nervous System and Sudden Death

  • Reference work entry
  • First Online:
  • 838 Accesses

Abstract

The autonomic nervous system with its sympathetic and parasympathetic limbs and its neurohormones (nor)epinephrine and acetylcholine is a well-recognized modulator of cardiac electrophysiology. Inherited or congenital inhomogeneities of cardiac autonomic innervation, sympathovagal imbalance, autonomic nervous system hyperactivity, autonomic conflict, and/or genetic variants of α- and β-adrenergic receptors can predispose even structurally normal hearts to life-threatening arrhythmias. Remodeling of the autonomic nervous system found in patients with epilepsy and sudden infant death syndrome can also predispose to sudden death. The overlap between small fiber neuropathy, cardiac conduction disease, and Brugada syndrome possibly via genomic modulation is briefly addressed. Alternatively, the heart itself may be intrinsically susceptible to variations in autonomic nervous function. Inherited arrhythmia syndromes like the long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, and Brugada syndrome can lead to sudden death under conditions of altered autonomic nervous system tone. In this chapter we focus on the genetic determinants affecting the relationship between the autonomic nervous system and sudden death.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albert CM, Chae CU, Grodstein F, Rose LM, Rexrode KM, Ruskin JN, Stampfer MJ, Manson JE. Prospective study of sudden cardiac death among women in the United States. Circulation. 2003;107:2096–101.

    PubMed  Google Scholar 

  2. Friedlander Y, Siscovick DS, Weinmann S, Austin MA, Psaty BM, Lemaitre RN, Arbogast P, Raghunathan TE, Cobb LA. Family history as a risk factor for primary cardiac arrest. Circulation. 1998;97:155–60.

    CAS  PubMed  Google Scholar 

  3. Jouven X, Desnos M, Guerot C, Ducimetière P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation. 1999;99:1978–183.

    CAS  PubMed  Google Scholar 

  4. Dekker LR, Bezzina CR, Henriques JP, Tanck MW, Koch KT, Alings MW, Arnold AE, de Boer MJ, Gorgels AP, Michels HR, Verkerk A, Verheugt FW, Zijlstra F, Wilde AA. Familial sudden death is an important risk factor for primary ventricular fibrillation: a case-control study in acute myocardial infarction patients. Circulation. 2006;114:1140–5.

    PubMed  Google Scholar 

  5. Kaikkonen KS, Kortelainen ML, Linna E, Huikuri HV. Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation. 2006;114:1462–7.

    PubMed  Google Scholar 

  6. Callans DJ. Out-of-hospital cardiac arrest–the solution is shocking. N Engl J Med. 2004;351:632–4.

    CAS  PubMed  Google Scholar 

  7. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. 2012;125:620–37.

    PubMed  PubMed Central  Google Scholar 

  8. Hulleman M, Berdowski J, de Groot JR, van Dessel PF, Borleffs CJ, Blom MT, Bardai A, de Cock CC, Tan HL, Tijssen JG, Koster RW. Implantable cardioverter-defibrillators have reduced the incidence of resuscitation for out-of-hospital cardiac arrest caused by lethal arrhythmias. Circulation. 2012;126:815–21.

    PubMed  Google Scholar 

  9. Schwartz PJ, Priori SG. Sympathetic nervous system and cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology from cell to bedside. Philadelphia: WB Saunders; 1990. p. 330–43.

    Google Scholar 

  10. Matsuo K, Kurita T, Inagaki M, Kakishita M, Aihara N, Shimizu W, Taguchi A, Suyama K, Kamakura S, Shimomura K. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur Heart J. 1999;20:465–70.

    CAS  PubMed  Google Scholar 

  11. Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation. 1992;85:I77–91.

    CAS  PubMed  Google Scholar 

  12. Muller JE, Ludmer PL, Willich SN, Tofler GH, Aylmer G, Klangos I, Stone PH. Circadian variation in the frequency of sudden cardiac death. Circulation. 1987;75:131–8.

    CAS  PubMed  Google Scholar 

  13. Peters RW. Propranolol and the morning increase in sudden cardiac death: (the beta-blocker heart attack trial experience). Am J Cardiol. 1990;66:57G–9G.

    CAS  PubMed  Google Scholar 

  14. Schwartz PJ. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol. 2014;11:346–53.

    PubMed  Google Scholar 

  15. Moïse NS, Gilmour RF Jr, Riccio ML. An animal model of spontaneous arrhythmic death. J Cardiovasc Electrophysiol. 1997;8:98–103.

    PubMed  Google Scholar 

  16. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, Denjoy I, Guicheney P, Breithardt G, Keating MT, Towbin JA, Beggs AH, Brink P, Wilde AA, Toivonen L, Zareba W, Robinson JL, Timothy KW, Corfield V, Wattanasirichaigoon D, Corbett C, Haverkamp W, Schulze-Bahr E, Lehmann MH, Schwartz K, Coumel P, Bloise R. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103: 89–95.

    CAS  PubMed  Google Scholar 

  17. Crotti L, Spazzolini C, Porretta AP, Dagradi F, Taravelli E, Petracci B, Vicentini A, Pedrazzini M, La Rovere MT, Vanoli E, Goosen A, Heradien M, George AL Jr, Brink PA, Schwartz PJ. Vagal reflexes following an exercise stress test: a simple clinical tool for gene-specific risk stratification in the long QT syndrome. J Am Coll Cardiol. 2012;60:2515–24.

    PubMed  PubMed Central  Google Scholar 

  18. Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O’Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol. 2016;594:3877–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Foreman RD. Mechanisms of cardiac pain. Annu Rev Physiol. 1999;61:143–67.

    CAS  PubMed  Google Scholar 

  20. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–46.

    CAS  PubMed  Google Scholar 

  21. Norris JE, Foreman RD, Wurster RK. Responses of the canine heart to stimulation of the first five ventral thoracic roots. Am J Phys. 1974;227:9–12.

    CAS  Google Scholar 

  22. Norris JE, Lippincott D, Wurster RD. Responses of canine endocardium to stimulation of the upper thoracic roots. Am J Phys. 1977;233:H655–9.

    CAS  Google Scholar 

  23. Vaseghi M, Zhou W, Shi J, Ajijola OA, Hadaya J, Shivkumar K, Mahajan A. Sympathetic innervation of the anterior left ventricular wall by the right and left stellate ganglia. Heart Rhythm. 2012;9:1303–9.

    PubMed  Google Scholar 

  24. Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec. 2000;259:353–82.

    CAS  PubMed  Google Scholar 

  25. Ulphani JS, Cain JH, Inderyas F, Gordon D, Gikas PV, Shade G, Mayor D, Arora R, Kadish AH, Goldberger JJ. Quantitative analysis of parasympathetic innervation of the porcine heart. Heart Rhythm. 2010;7:1113–9.

    PubMed  Google Scholar 

  26. Armour JA. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol. 2008;93:165–76.

    CAS  PubMed  Google Scholar 

  27. Ardell JL, Butler CK, Smith FM, Hopkins DA, Armour JA. Activity of in vivo atrial and ventricular neurons in chronically decentralized canine hearts. Am J Phys. 1991;260:H713–21.

    CAS  Google Scholar 

  28. Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG Jr. Differentiation of receptor systems activated by sympathomimetic amines. Nature. 1967;214:597–8.

    CAS  PubMed  Google Scholar 

  29. Brodde OE. Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev. 1991;43: 203–42.

    CAS  PubMed  Google Scholar 

  30. Brodde OE. Beta-adrenoceptors in cardiac disease. Pharmacol Ther. 1993;60:405–30.

    CAS  PubMed  Google Scholar 

  31. Rozec B, Erfanian M, Laurent K, Trochu JN, Gauthier C. Nebivolol, a vasodilating selective beta(1)-blocker, is a beta(3)-adrenoceptor agonist in the nonfailing transplanted human heart. J Am Coll Cardiol. 2009;53:1532–8.

    CAS  PubMed  Google Scholar 

  32. Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q. Subtype-specific α1- and β-adrenoceptor signaling in the heart. Trends Pharmacol Sci. 2006;27:330–7.

    CAS  PubMed  Google Scholar 

  33. Wang W, Zhu W, Wang S, Yang D, Crow MT, Xiao RP, Cheng H. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res. 2004;95:798–806.

    CAS  PubMed  Google Scholar 

  34. Volders PG, Stengl M, van Opstal JM, Gerlach U, Spatjens RL, Beekman JD, Sipido KR, Vos MA. Probing the contribution of IKs to canine ventricular repolarization: key role for ß-adrenergic receptor stimulation. Circulation. 2003;107:2753–60.

    PubMed  Google Scholar 

  35. Heijman J, Volders PG, Westra RL, Rudy Y. Local control of beta-adrenergic stimulation: effects on ventricular myocyte electrophysiology and Ca(2+)-transient. J Mol Cell Cardiol. 2011;50:863–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao RP, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG, Cheng H. Subtype-specific beta-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci. 2004;25:358–65.

    CAS  PubMed  Google Scholar 

  37. Kathöfer S, Röckl K, Zhang W, Thomas D, Katus H, Kiehn J, Kreye V, Schoels W, Karle C. Human beta(3)-adrenoreceptors couple to KvLQT1/MinK potassium channels in Xenopus oocytes via protein kinase C phosphorylation of the KvLQT1 protein. Naunyn Schmiedeberg’s Arch Pharmacol. 2003;368:119–26.

    Google Scholar 

  38. Li K, He H, Li C, Sirois P, Rouleau JL. Myocardial alpha1-adrenoceptor: inotropic effect and physiologic and pathologic implications. Life Sci. 1997;60: 1305–18.

    CAS  PubMed  Google Scholar 

  39. Starke K, Gothert M, Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev. 1989;69:864–989.

    CAS  PubMed  Google Scholar 

  40. Hein L, Altman JD, Kobilka BK. Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature. 1999;402:181–4.

    CAS  PubMed  Google Scholar 

  41. Brack KE, Patel VH, Coote JH, Ng GA. Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J Physiol. 2007;583: 695–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brack KE, Patel VH, Mantravardi R, Coote JH, Ng GA. Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation. J Physiol. 2009;587:3045–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Herring N, Golding S, Paterson DJ. Pre-synaptic NO-cGMP pathway modulates vagal control of heart rate in isolated adult Guinea pig atria. J Mol Cell Cardiol. 2000;32:1795–804.

    CAS  PubMed  Google Scholar 

  44. Schwartz PJ, Snebold NG, Brown AM. Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol. 1976;37:1034–40.

    CAS  PubMed  Google Scholar 

  45. Gallacher DJ, Van de Water A, van der Linde H, Hermans AN, Lu HR, Towart R, Volders PG. In vivo mechanisms precipitating torsades de pointes in a canine model of drug-induced long-QT1 syndrome. Cardiovasc Res. 2007;76:247–56.

    CAS  PubMed  Google Scholar 

  46. Doytchinova A, Patel J, Zhou S, Chen LS, Lin H, Shen C, Everett TH, Lin SF, Chen PS. Subcutaneous nerve activity and spontaneous ventricular arrhythmias in ambulatory dogs. Heart Rhythm. 2015;12: 612–20.

    PubMed  Google Scholar 

  47. ter Bekke RMA, Moers AME, de Jong MMJ, Johnson DM, Schwartz PJ, Vanoli E, Volders PGA. Proarrhythmic proclivity of left-stellate ganglion stimulation in a canine model of drug-induced long-QT syndrome type 1. Int J Cardiol. 2019;286:66–72.

    PubMed  Google Scholar 

  48. Zhou S, Jung BC, Tan AY, Trang VQ, Gholmieh G, Han SW, Lin SF, Fishbein MC, Chen PS, Chen LS. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm. 2008;5:131–9.

    PubMed  Google Scholar 

  49. Opthof T, Misier AR, Coronel R, Vermeulen JT, Verberne HJ, Frank RG, Moulijn AC, van Capelle FJ, Janse MJ. Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation. Circ Res. 1991;68:1204–15.

    CAS  PubMed  Google Scholar 

  50. Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, Wellens HJ, Lazzara R. Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res. 2000;46:376–92.

    CAS  PubMed  Google Scholar 

  51. Myles RC, Wang L, Kang C, Bers DM, Ripplinger CM. Local beta-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ Res. 2012;110:1454–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res. 2007;73:750–60.

    CAS  PubMed  Google Scholar 

  53. Schwartz PJ, Stone HL, Brown AM. Effects of unilateral stellate ganglion blockade on the arrhythmias associated with coronary occlusion. Am Heart J. 1976;92:589–99.

    CAS  PubMed  Google Scholar 

  54. Dae MW, Lee RJ, Ursell PC, Chin MC, Stillson CA, Moïse NS. Heterogeneous sympathetic innervation in German shepherd dogs with inherited ventricular arrhythmia and sudden cardiac death. Circulation. 1997;96:1337–42.

    CAS  PubMed  Google Scholar 

  55. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.

    CAS  PubMed  Google Scholar 

  56. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation. 1987;75:877–87.

    CAS  PubMed  Google Scholar 

  57. Reid DS, Tynan M, Braidwood L, Fitzgerald GR. Bidirectional tachycardia in a child. A study using His bundle electrography. Br Heart J. 1975;37: 339–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kies P, Paul M, Gerss J, Stegger L, Mönnig G, Schober O, Wichter T, Schäfers M, Schulze-Bahr E. Impaired cardiac sympathetic innervation in symptomatic patients with long QT syndrome. Eur J Nucl Med Mol Imaging. 2011;38:1899–907.

    PubMed  Google Scholar 

  59. Schwartz PJ, Vanoli E, Stramba-Badiale M, De Ferrari GM, Billman GE, Foreman RD. Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation. 1988;78:969–79.

    CAS  Google Scholar 

  60. De Ferrari GM, Vanoli E, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ. Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. Am J Phys. 1991;261:H63–9.

    Google Scholar 

  61. Martins JB, Zipes DP. Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res. 1980;46:100–10.

    CAS  PubMed  Google Scholar 

  62. Naggar I, Nakase K, Lazar J, Salciccioli L, Selesnick I, Stewart M. Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals. Auton Neurosci. 2014;183:12–22.

    PubMed  Google Scholar 

  63. Gold MR, Van Veldhuisen DJ, Hauptman PJ, Borggrefe M, Kubo SH, Lieberman RA, Milasinovic G, Berman BJ, Djordjevic S, Neelagaru S, Schwartz PJ, Starling RC, Mann DL. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J Am Coll Cardiol. 2016;68:149–58.

    Google Scholar 

  64. Zannad F, De Ferrari GM, Tuinenburg AE, Wright D, Brugada J, Butter C, Klein H, Stolen C, Meyer S, Stein KM, Ramuzat A, Schubert B, Daum D, Neuzil P, Botman C, Castel MA, D’Onofrio A, Solomon SD, Wold N, Ruble SB. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J. 2015;36:425–33.

    PubMed  Google Scholar 

  65. Shinohara T, Kondo H, Otsubo T, Fukui A, Yufu K, Nakagawa M, Takahashi N. Exaggerated reactivity of parasympathetic nerves is involved in ventricular fibrillation in J-wave syndrome. J Cardiovasc Electrophysiol. 2017;28:321–6.

    PubMed  Google Scholar 

  66. Schwartz PJ, Vanoli E, Crotti L, Spazzolini C, Ferrandi C, Goosen A, Hedley P, Heradien M, Bacchini S, Turco A, La Rovere MT, Bartoli A, George AL Jr, Brink PA. Neural control of heart rate is an arrhythmia risk modifier in long QT syndrome. J Am Coll Cardiol. 2008;51:920–9.

    PubMed  Google Scholar 

  67. Shattock MJ, Tipton MJ. ‘Autonomic conflict’: a different way to die during cold water immersion? J Physiol. 2012;590:3219–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lorentz CU, Alston EN, Belcik T, Lindner JR, Giraud GD, Habecker BA. Heterogeneous ventricular sympathetic innervation, altered beta-adrenergic receptor expression, and rhythm instability in mice lacking the p75 neurotrophin receptor. Am J Physiol Heart Circ Physiol. 2010;298:H1652–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS. Nerve sprouting and sudden cardiac death. Circ Res. 2000;86:816–21.

    CAS  PubMed  Google Scholar 

  70. Tanelian DL, Barry MA, Johnston SA, Le T, Smith GM. Semaphorin III can repulse and inhibit adult sensory afferents in vivo. Nat Med. 1997;3: 1398–401.

    CAS  PubMed  Google Scholar 

  71. Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, Lee JK, Matsumura K, Tomita Y, Miyoshi S, Shimoda K, Makino S, Sano M, Kodama I, Ogawa S, Fukuda K. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med. 2007;13:604–12.

    CAS  PubMed  Google Scholar 

  72. Kimura K, Ieda M, Fukuda K. Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res. 2012;110:325–36.

    CAS  PubMed  Google Scholar 

  73. Nakano Y, Chayama K, Ochi H, Toshishige M, Hayashida Y, Miki D, Hayes CN, Suzuki H, Tokuyama T, Oda N, Suenari K, Uchimura-Makita Y, Kajihara K, Sairaku A, Motoda C, Fujiwara M, Watanabe Y, Yoshida Y, Ohkubo K, Watanabe I, Nogami A, Hasegawa K, Watanabe H, Endo N, Aiba T, Shimizu W, Ohno S, Horie M, Arihiro K, Tashiro S, Makita N, Kihara Y. A nonsynonymous polymorphism in semaphorin 3A as a risk factor for human unexplained cardiac arrest with documented ventricular fibrillation. PLoS Genet. 2013;9:e1003364.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Snapir A, Mikkelsson J, Perola M, Penttila A, Scheinin M, Karhunen PJ. Variation in the alpha2B-adrenoceptor gene as a risk factor for prehospital fatal myocardial infarction and sudden cardiac death. J Am Coll Cardiol. 2003;41:190–4.

    CAS  PubMed  Google Scholar 

  75. Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med. 2002;347:1135–42.

    CAS  PubMed  Google Scholar 

  76. O’Connor CM, Fiuzat M, Carson PE, Anand IS, Plehn JF, Gottlieb SS, Silver MA, Lindenfeld J, Miller AB, White M, Walsh R, Nelson P, Medway A, Davis G, Robertson AD, Port JD, Carr J, Murphy GA, Lazzeroni LC, Abraham WT, Liggett SB, Bristow MR. Combinatorial pharmacogenetic interactions of bucindolol and beta1, alpha2C adrenergic receptor polymorphisms. PLoS One. 2012;7:e44324.

    PubMed  PubMed Central  Google Scholar 

  77. Levin MC, Marullo S, Muntaner O, Andersson B, Magnusson Y. The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem. 2002;277: 30429–3035.

    CAS  PubMed  Google Scholar 

  78. Börjesson M, Magnusson Y, Hjalmarson A, Andersson B. A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J. 2000;21:1853–8.

    PubMed  Google Scholar 

  79. Terra SG, Hamilton KK, Pauly DF, Lee CR, Patterson JH, Adams KF, Schofield RS, Belgado BS, Hill JA, Aranda JM, Yarandi HN, Johnson JA. Beta1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet Genomics. 2005;15:227–34.

    CAS  PubMed  Google Scholar 

  80. Magnusson Y, Levin MC, Eggertsen R, Nyström E, Mobini R, Schaufelberger M, Andersson B. Ser49Gly of beta1-adrenergic receptor is associated with effective beta-blocker dose in dilated cardiomyopathy. Clin Pharmacol Ther. 2005;78:221–31.

    CAS  PubMed  Google Scholar 

  81. Iwai C, Akita H, Shiga N, Takai E, Miyamoto Y, Shimizu M, Kawai H, Takarada A, Kajiya T, Yokoyama M. Suppressive effect of the Gly389 allele of the beta1-adrenergic receptor gene on the occurrence of ventricular tachycardia in dilated cardiomyopathy. Circ J. 2002;66:723–8.

    CAS  PubMed  Google Scholar 

  82. Biolo A, Clausell N, Santos KG, Salvaro R, Ashton-Prolla P, Borges A, Rohde LE. Impact of beta1-adrenergic receptor polymorphisms on susceptibility to heart failure, arrhythmogenesis, prognosis, and response to beta-blocker therapy. Am J Cardiol. 2008;102:726–32.

    CAS  PubMed  Google Scholar 

  83. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, Weber SA, Greene SM, Hodne D, Nelson B, Morrison J, Domanski MJ, Wagoner LE, Abraham WT, Anderson JL, Carlquist JF, Krause-Steinrauf HJ, Lazzeroni LC, Port JD, Lavori PW, Bristow MR. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A. 2006;103:11288–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mason DA, Moore JD, Green SA, Liggett SB. A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem. 1999;274:12670–4.

    CAS  PubMed  Google Scholar 

  85. Tseng ZH, Aouizerat BE, Pawlikowska L, Vittinghoff E, Lin F, Whiteman D, Poon A, Herrington D, Howard TD, Varosy PD, Hulley SB, Malloy M, Kane J, Kwok PY, Olgin JE. Common beta-adrenergic receptor polymorphisms are not associated with risk of sudden cardiac death in patients with coronary artery disease. Heart Rhythm. 2008;5:814–21.

    PubMed  PubMed Central  Google Scholar 

  86. Lanfear DE, Jones PG, Marsh S, Cresci S, McLeod HL, Spertus JA. Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome. JAMA. 2005;294:1526–33.

    CAS  PubMed  Google Scholar 

  87. Sotoodehnia N, Siscovick DS, Vatta M, Psaty BM, Tracy RP, Towbin JA, Lemaitre RN, Rea TD, Durda JP, Chang JM, Lumley TS, Kuller LH, Burke GL, Heckbert SR. Beta2-adrenergic receptor genetic variants and risk of sudden cardiac death. Circulation. 2006;113:1842–8.

    CAS  PubMed  Google Scholar 

  88. Gavin MC, Newton-Cheh C, Gaziano JM, Cook NR, VanDenburgh M, Albert CM. A common variant in the beta2-adrenergic receptor and risk of sudden cardiac death. Heart Rhythm. 2011;8:704–10.

    PubMed  PubMed Central  Google Scholar 

  89. Green SA, Turki J, Innis M, Liggett SB. Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. 1994;33:9414–9.

    CAS  PubMed  Google Scholar 

  90. Moon RY, Horne RS, Hauck FR. Sudden infant death syndrome. Lancet. 2007;370:1578–87.

    PubMed  Google Scholar 

  91. Guntheroth WG, Lohmann R, Spiers PS. Risk of sudden infant death syndrome in subsequent siblings. J Pediatr. 1990;116:520–4.

    CAS  PubMed  Google Scholar 

  92. Tester DJ, Ackerman MJ. Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc Res. 2005;67:388–96.

    CAS  PubMed  Google Scholar 

  93. Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA. 2006;296:2124–32.

    CAS  PubMed  Google Scholar 

  94. Narita N, Narita M, Takashima S, Nakayama M, Nagai T, Okado N. Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population. Pediatrics. 2001;107: 690–2.

    CAS  PubMed  Google Scholar 

  95. Weese-Mayer DE, Zhou L, Berry-Kravis EM, Maher BS, Silvestri JM, Marazita ML. Association of the serotonin transporter gene with sudden infant death syndrome: a haplotype analysis. Am J Med Genet A. 2003;122A:238–45.

    PubMed  Google Scholar 

  96. Weese-Mayer DE, Berry-Kravis EM, Maher BS, Silvestri JM, Curran ME, Marazita ML. Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene. Am J Med Genet A. 2003;117A:268–74.

    PubMed  Google Scholar 

  97. Haas C, Braun J, Bar W, Bartsch C. No association of serotonin transporter gene variation with sudden infant death syndrome (SIDS) in Caucasians. Leg Med (Tokyo). 2009;11(Suppl 1):S210–2.

    Google Scholar 

  98. Paterson DS, Rivera KD, Broadbelt KG, Trachtenberg FL, Belliveau RA, Holm IA, Haas EA, Stanley C, Krous HF, Kinney HC, Markianos K. Lack of association of the serotonin transporter polymorphism with the sudden infant death syndrome in the San Diego Dataset. Pediatr Res. 2010;68:409–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rand CM, Berry-Kravis EM, Zhou L, Fan W, Weese-Mayer DE. Sudden infant death syndrome: rare mutation in the serotonin system FEV gene. Pediatr Res. 2007;62:180–2.

    CAS  PubMed  Google Scholar 

  100. Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, Marazita ML. Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development. Pediatr Res. 2004;56:391–5.

    CAS  PubMed  Google Scholar 

  101. Schwartz PJ, Stramba-Badiale M, Segantini A, Austoni P, Bosi G, Giorgetti R, Grancini F, Marni ED, Perticone F, Rosti D, Salice P. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med. 1998;338:1709–14.

    CAS  PubMed  Google Scholar 

  102. Wilders R. Cardiac ion channelopathies and the sudden infant death syndrome. ISRN Cardiol. 2012;2012:846171.

    PubMed  PubMed Central  Google Scholar 

  103. Van Norstrand DW, Ackerman MJ. Sudden infant death syndrome: do ion channels play a role? Heart Rhythm. 2009;6:272–8.

    PubMed  Google Scholar 

  104. Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, Ackerman MJ. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4:161–6.

    PubMed  Google Scholar 

  105. Van Norstrand DW, Valdivia CR, Tester DJ, Ueda K, London B, Makielski JC, Ackerman MJ. Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation. 2007;116:2253–9.

    PubMed  PubMed Central  Google Scholar 

  106. Rhodes TE, Abraham RL, Welch RC, Vanoye CG, Crotti L, Arnestad M, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Rognum T, Roden DM, Schwartz PJ, George AL Jr. Cardiac potassium channel dysfunction in sudden infant death syndrome. J Mol Cell Cardiol. 2008;44:571–81.

    CAS  PubMed  Google Scholar 

  107. Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, Ackerman MJ. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm. 2007;4:733–9.

    PubMed  PubMed Central  Google Scholar 

  108. Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Wang DW, Rhodes TE, George AL Jr, Schwartz PJ. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115:361–7.

    PubMed  Google Scholar 

  109. Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, Towbin JA. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–9.

    CAS  PubMed  Google Scholar 

  110. Tan BH, Pundi KN, Van Norstrand DW, Valdivia CR, Tester DJ, Medeiros-Domingo A, Makielski JC, Ackerman MJ. Sudden infant death syndrome-associated mutations in the sodium channel beta subunits. Heart Rhythm. 2010;7:771–8.

    PubMed  PubMed Central  Google Scholar 

  111. Cheng J, Van Norstrand DW, Medeiros-Domingo A, Valdivia C, Tan BH, Ye B, Kroboth S, Vatta M, Tester DJ, January CT, Makielski JC, Ackerman MJ. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Circ Arrhythm Electrophysiol. 2009;2:667–76.

    PubMed  PubMed Central  Google Scholar 

  112. Coll M, Striano P, Ferrer-Costa C, Campuzano O, Mates J, Del Olmo B, Iglesias A, Perez-Serra A, Mademont I, Pico F, Oliva A, Brugada R. Targeted next-generation sequencing provides novel clues for associated epilepsy and cardiac conduction disorder/SUDEP. PLoS One. 2017;12:e0189618.

    PubMed  PubMed Central  Google Scholar 

  113. Ravindran K, Powell KL, Todaro M, O’Brien TJ. The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res. 2016;127:19–29.

    CAS  PubMed  Google Scholar 

  114. Powell KL, Jones NC, Kennard JT, Ng C, Urmaliya V, Lau S, Tran A, Zheng T, Ozturk E, Dezsi G, Megatia I, Delbridge LM, Pinault D, Reid CA, White PJ, O’Brien TJ. HCN channelopathy and cardiac electrophysiologic dysfunction in genetic and acquired rat epilepsy models. Epilepsia. 2014;55:609–20.

    CAS  PubMed  Google Scholar 

  115. Neufeld G, Lazar JM, Chari G, Kamran H, Akajagbor E, Salciccioli L, Kassotis J, Stewart M. Cardiac repolarization indices in epilepsy patients. Cardiology. 2009;114:255–60.

    PubMed  Google Scholar 

  116. Krishnan V, Krishnamurthy KB. Interictal 12-lead electrocardiography in patients with epilepsy. Epilepsy Behav. 2013;29:240–6.

    PubMed  Google Scholar 

  117. Brotherstone R, Blackhall B, McLellan A. Lengthening of corrected QT during epileptic seizures. Epilepsia. 2010;51:221–32.

    PubMed  Google Scholar 

  118. Surges R, Thijs RD, Tan HL, Sander JW. Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurol. 2009;5:492–504.

    CAS  PubMed  Google Scholar 

  119. Druschky A, Hilz MJ, Hopp P, Platsch G, Radespiel-Troger M, Druschky K, Kuwert T, Stefan H, Neundorfer B. Interictal cardiac autonomic dysfunction in temporal lobe epilepsy demonstrated by [(123)I]metaiodobenzylguanidine-SPECT. Brain. 2001;124:2372–82.

    CAS  PubMed  Google Scholar 

  120. Tu E, Bagnall RD, Duflou J, Semsarian C. Post-mortem review and genetic analysis of sudden unexpected death in epilepsy (SUDEP) cases. Brain Pathol. 2011;21:201–8.

    CAS  PubMed  Google Scholar 

  121. Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, Morita H, Higashiuesato Y, Hirano Y, Yasunami M, Takishita S, Yamashina A, Ohe T, Sunamori M, Hiraoka M, Kimura A. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem. 2004;279:27194–8.

    CAS  PubMed  Google Scholar 

  122. Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J. 2003;22: 216–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Moore BM, Jerry Jou C, Tatalovic M, Kaufman ES, Kline DD, Kunze DL. The Kv1.1 null mouse, a model of sudden unexpected death in epilepsy (SUDEP). Epilepsia. 2014;55:1808–16.

    PubMed  Google Scholar 

  124. Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med. 2009;1:2ra6.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Goldenberg I, Moss AJ. Long QT syndrome. J Am Coll Cardiol. 2008;51:2291–300.

    PubMed  Google Scholar 

  126. Zamorano-Leon JJ, Yanez R, Jaime G, Rodriguez-Sierra P, Calatrava-Ledrado L, Alvarez-Granada RR, Mateos-Caceres PJ, Macaya C, Lopez-Farre AJ. KCNH2 gene mutation: a potential link between epilepsy and long QT-2 syndrome. J Neurogenet. 2012;26:382–6.

    CAS  PubMed  Google Scholar 

  127. Partemi S, Cestele S, Pezzella M, Campuzano O, Paravidino R, Pascali VL, Zara F, Tassinari CA, Striano S, Oliva A, Brugada R, Mantegazza M, Striano P. Loss-of-function KCNH2 mutation in a family with long QT syndrome, epilepsy, and sudden death. Epilepsia. 2013;54:e112–6.

    CAS  PubMed  Google Scholar 

  128. Haugaa KH, Vestervik TT, Andersson S, Amlie JP, Jorum E, Gjerstad L, Tauboll E. Abnormal electroencephalograms in patients with long QT syndrome. Heart Rhythm. 2013;10:1877–83.

    PubMed  Google Scholar 

  129. Jansen FE, Sadleir LG, Harkin LA, Vadlamudi L, McMahon JM, Mulley JC, Scheffer IE, Berkovic SF. Severe myoclonic epilepsy of infancy (Dravet syndrome): recognition and diagnosis in adults. Neurology. 2006;67:2224–6.

    CAS  PubMed  Google Scholar 

  130. Biet M, Morin N, Lessard-Beaudoin M, Graham RK, Duss S, Gagne J, Sanon NT, Carmant L, Dumaine R. Prolongation of action potential duration and QT interval during epilepsy linked to increased contribution of neuronal sodium channels to cardiac late Na+ current: potential mechanism for sudden death in epilepsy. Circ Arrhythm Electrophysiol. 2015;8:912–20.

    CAS  PubMed  Google Scholar 

  131. Parisi P, Oliva A, Coll Vidal M, Partemi S, Campuzano O, Iglesias A, Pisani D, Pascali VL, Paolino MC, Villa MP, Zara F, Tassinari CA, Striano P, Brugada R. Coexistence of epilepsy and Brugada syndrome in a family with SCN5A mutation. Epilepsy Res. 2013;105:415–8.

    CAS  PubMed  Google Scholar 

  132. Aurlien D, Leren TP, Tauboll E, Gjerstad L. New SCN5A mutation in a SUDEP victim with idiopathic epilepsy. Seizure. 2009;18:158–60.

    PubMed  Google Scholar 

  133. Veeramah KR, O’Brien JE, Meisler MH, Cheng X, Dib-Hajj SD, Waxman SG, Talwar D, Girirajan S, Eichler EE, Restifo LL, Erickson RP, Hammer MF. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90:502–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Frasier CR, Wagnon JL, Bao YO, McVeigh LG, Lopez-Santiago LF, Meisler MH, Isom LL. Cardiac arrhythmia in a mouse model of sodium channel SCN8A epileptic encephalopathy. Proc Natl Acad Sci U S A. 2016;113:12838–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A. 2012;109:19444–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. van den Boogaard M, Smemo S, Burnicka-Turek O, Arnolds DE, van de Werken HJ, Klous P, McKean D, Muehlschlegel JD, Moosmann J, Toka O, Yang XH, Koopmann TT, Adriaens ME, Bezzina CR, de Laat W, Seidman C, Seidman JG, Christoffels VM, Nobrega MA, Barnett P, Moskowitz IP. A common genetic variant within SCN10A modulates cardiac SCN5A expression. J Clin Invest. 2014;124: 1844–52.

    PubMed  PubMed Central  Google Scholar 

  137. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO, Schwartz PJ, Crotti L, Dagradi F, Guicheney P, Fressart V, Leenhardt A, Antzelevitch C, Bartkowiak S, Borggrefe M, Schimpf R, Schulze-Bahr E, Zumhagen S, Behr ER, Bastiaenen R, Tfelt-Hansen J, Olesen MS, Kääb S, Beckmann BM, Weeke P, Watanabe H, Endo N, Minamino T, Horie M, Ohno S, Hasegawa K, Makita N, Nogami A, Shimizu W, Aiba T, Froguel P, Balkau B, Lantieri O, Torchio M, Wiese C, Weber D, Wolswinkel R, Coronel R, Boukens BJ, Bézieau S, Charpentier E, Chatel S, Despres A, Gros F, Kyndt F, Lecointe S, Lindenbaum P, Portero V, Violleau J, Gessler M, Tan HL, Roden DM, Christoffels VM, Le Marec H, Wilde AA, Probst V, Schott JJ, Dina C, Redon R. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet. 2013;45:1044–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hu D, Barajas-Martinez H, Pfeiffer R, Dezi F, Pfeiffer J, Buch T, Betzenhauser MJ, Belardinelli L, Kahlig KM, Rajamani S, DeAntonio HJ, Myerburg RJ, Ito H, Deshmukh P, Marieb M, Nam GB, Bhatia A, Hasdemir C, Haissaguerre M, Veltmann C, Schimpf R, Borggrefe M, Viskin S, Antzelevitch C. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J Am Coll Cardiol. 2014;64:66–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Behr ER, Savio-Galimberti E, Barc J, Holst AG, Petropoulou E, Prins BP, Jabbari J, Torchio M, Berthet M, Mizusawa Y, Yang T, Nannenberg EA, Dagradi F, Weeke P, Bastiaenan R, Ackerman MJ, Haunso S, Leenhardt A, Kaab S, Probst V, Redon R, Sharma S, Wilde A, Tfelt-Hansen J, Schwartz P, Roden DM, Bezzina CR, Olesen M, Darbar D, Guicheney P. Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovasc Res. 2015;106:520–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kaltman JR, Thompson PD, Lantos J, Berul CI, Botkin J, Cohen JT, Cook NR, Corrado D, Drezner J, Frick KD, Goldman S, Hlatky M, Kannankeril PJ, Leslie L, Priori S, Saul JP, Shapiro-Mendoza CK, Siscovick D, Vetter VL, Boineau R, Burns KM, Friedman RA. Screening for sudden cardiac death in the young: report from a national heart, lung, and blood institute working group. Circulation. 2011;123:1911–8.

    PubMed  Google Scholar 

  141. Moss AJ, Shimizu W, Wilde AA, Towbin JA, Zareba W, Robinson JL, Qi M, Vincent GM, Ackerman MJ, Kaufman ES, Hofman N, Seth R, Kamakura S, Miyamoto Y, Goldenberg I, Andrews ML, McNitt S. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 2007;115:2481–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Porta A, Girardengo G, Bari V, George AL Jr, Brink PA, Goosen A, Crotti L, Schwartz PJ. Autonomic control of heart rate and QT interval variability influences arrhythmic risk in long QT syndrome type 1. J Am Coll Cardiol. 2015;65:367–74.

    PubMed  PubMed Central  Google Scholar 

  143. Zumhagen S, Vrachimis A, Stegger L, Kies P, Wenning C, Ernsting M, Muller J, Seebohm G, Paul M, Schafers K, Stallmeyer B, Schafers M, Schulze-Bahr E. Impact of presynaptic sympathetic imbalance in long-QT syndrome by positron emission tomography. Heart. 2018;104:332–9.

    CAS  PubMed  Google Scholar 

  144. Ackerman MJ, Tester DJ, Porter CJ. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc. 1999;74: 1088–94.

    CAS  PubMed  Google Scholar 

  145. Shimizu W, Antzelevitch C. Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol. 2000;35:778–86.

    CAS  PubMed  Google Scholar 

  146. Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E, Moncalvo C, Tulipani C, Veia A, Bottelli G, Nastoli J. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292:1341–4.

    CAS  PubMed  Google Scholar 

  147. Wilde AA, Moss AJ, Kaufman ES, Shimizu W, Peterson DR, Benhorin J, Lopes C, Towbin JA, Spazzolini C, Crotti L, Zareba W, Goldenberg I, Kanters JK, Robinson JL, Qi M, Hofman N, Tester DJ, Bezzina CR, Alders M, Aiba T, Kamakura S, Miyamoto Y, Andrews ML, McNitt S, Polonsky B, Schwartz PJ, Ackerman MJ. Clinical aspects of type 3 long-QT syndrome: an international multicenter study. Circulation. 2016;134:872–82.

    PubMed  PubMed Central  Google Scholar 

  148. ter Bekke RMA, Isaacs A, Barysenka A, Hoos MB, Jongbloed JDH, Hoorntje JCA, Patelski ASM, Helderman-van den Enden A, van den Wijngaard A, Stoll M, Volders PGA. Heritability in a SCN5A-mutation founder population with increased female susceptibility to non-nocturnal ventricular tachyarrhythmia and sudden cardiac death. Heart Rhythm. 2017;14:1873–81.

    PubMed  Google Scholar 

  149. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med. 1971;285:903–4.

    CAS  PubMed  Google Scholar 

  150. Behere SP, Weindling SN. Catecholaminergic polymorphic ventricular tachycardia: an exciting new era. Ann Pediatr Cardiol. 2016;9:137–46.

    PubMed  PubMed Central  Google Scholar 

  151. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, Levy-Nissenbaum E, Khoury A, Lorber A, Goldman B, Lancet D, Eldar M. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69:1378–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Josephs K, Patel K, Janson CM, Montagna C, McDonald TV. Compound heterozygous CASQ2 mutations and long-term course of catecholaminergic polymorphic ventricular tachycardia. Mol Genet Genomic Med. 2017;5:788–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Priori SG, Chen SR. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res. 2011;108:871–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Paech C, Gebauer RA, Karstedt J, Marschall C, Bollmann A, Husser D. Ryanodine receptor mutations presenting as idiopathic ventricular fibrillation: a report on two novel familial compound mutations, c.6224T>C and c.13781A>G, with the clinical presentation of idiopathic ventricular fibrillation. Pediatr Cardiol. 2014;35:1437–41.

    PubMed  Google Scholar 

  155. van der Werf C, Zwinderman AH, Wilde AA. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia: state of the art and future developments. Europace. 2012;14:175–83.

    PubMed  Google Scholar 

  156. Watanabe H, Chopra N, Laver D, Hwang HS, Davies SS, Roach DE, Duff HJ, Roden DM, Wilde AA, Knollmann BC. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med. 2009;15:380–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest. 2008;118:2230–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Morita H, Zipes DP, Wu J. Brugada syndrome: insights of ST elevation, arrhythmogenicity, and risk stratification from experimental observations. Heart Rhythm. 2009;6:S34–43.

    PubMed  Google Scholar 

  159. Wichter T, Matheja P, Eckardt L, Kies P, Schafers K, Schulze-Bahr E, Haverkamp W, Borggrefe M, Schober O, Breithardt G, Schafers M. Cardiac autonomic dysfunction in Brugada syndrome. Circulation. 2002;105:702–6.

    PubMed  Google Scholar 

  160. Paul M, Meyborg M, Boknik P, Gergs U, Schmitz W, Breithardt G, Wichter T, Neumann J. Autonomic dysfunction in patients with Brugada syndrome: further biochemical evidence of altered signaling pathways. Pacing Clin Electrophysiol. 2011;34:1147–53.

    PubMed  Google Scholar 

  161. Aiba T, Farinelli F, Kostecki G, Hesketh GG, Edwards D, Biswas S, Tung L, Tomaselli GF. A mutation causing Brugada syndrome identifies a mechanism for altered autonomic and oxidant regulation of cardiac sodium currents. Circ Cardiovasc Genet. 2014;7:249–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Sharkey SW, Windenburg DC, Lesser JR, Maron MS, Hauser RG, Lesser JN, Haas TS, Hodges JS, Maron BJ. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol. 2010;55:333–41.

    PubMed  Google Scholar 

  163. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.

    CAS  PubMed  Google Scholar 

  164. Madhavan M, Borlaug BA, Lerman A, Rihal CS, Prasad A. Stress hormone and circulating biomarker profile of apical ballooning syndrome (Takotsubo cardiomyopathy): insights into the clinical significance of B-type natriuretic peptide and troponin levels. Heart. 2009;95:1436–41.

    CAS  PubMed  Google Scholar 

  165. Pison L, De Vusser P, Mullens W. Apical ballooning in relatives. Heart. 2004;90:e67.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kumar G, Holmes DR Jr, Prasad A. “Familial” apical ballooning syndrome (Takotsubo cardiomyopathy). Int J Cardiol. 2010;144:444–5.

    PubMed  Google Scholar 

  167. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Thiele H, Bauersachs J, Tschope C, Schultheiss HP, Laney CA, Rajan L, Michels G, Pfister R, Ukena C, Bohm M, Erbel R, Cuneo A, Kuck KH, Jacobshagen C, Hasenfuss G, Karakas M, Koenig W, Rottbauer W, Said SM, Braun-Dullaeus RC, Cuculi F, Banning A, Fischer TA, Vasankari T, Airaksinen KE, Fijalkowski M, Rynkiewicz A, Pawlak M, Opolski G, Dworakowski R, MacCarthy P, Kaiser C, Osswald S, Galiuto L, Crea F, Dichtl W, Franz WM, Empen K, Felix SB, Delmas C, Lairez O, Erne P, Bax JJ, Ford I, Ruschitzka F, Prasad A, Luscher TF. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373:929–38.

    CAS  PubMed  Google Scholar 

  168. Kushiro T, Saito F, Kusama J, Takahashi H, Imazeki T, Tani S, Kikuchi S, Imai S, Matsudaira K, Watanabe I, Hino T, Sato Y, Nakayama T, Nagao K, Kanmatsuse K. Takotsubo-shaped cardiomyopathy with type I CD36 deficiency. Heart Vessel. 2005;20: 123–5.

    Google Scholar 

  169. Limongelli G, D’Alessandro R, Masarone D, Maddaloni V, Vriz O, Minisini R, Citro R, Calabro P, Russo MG, Calabro R, Pacileo G, Bossone E, Elliott PM. Takotsubo cardiomyopathy: do the genetics matter? Heart Fail Clin. 2013;9: 207–16.

    PubMed  Google Scholar 

  170. Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE. Stress (Takotsubo) cardiomyopathy–a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med. 2008;5:22–9.

    CAS  Google Scholar 

  171. Sharkey SW, Maron BJ, Nelson P, Parpart M, Maron MS, Bristow MR. Adrenergic receptor polymorphisms in patients with stress (tako-tsubo) cardiomyopathy. J Cardiol. 2009;53:53–7.

    PubMed  Google Scholar 

  172. Vriz O, Minisini R, Citro R, Guerra V, Zito C, De Luca G, Pavan D, Pirisi M, Limongelli G, Bossone E. Analysis of beta1 and beta2-adrenergic receptors polymorphism in patients with apical ballooning cardiomyopathy. Acta Cardiol. 2011;66: 787–90.

    PubMed  Google Scholar 

  173. Spinelli L, Trimarco V, Di Marino S, Marino M, Iaccarino G, Trimarco B. L41Q polymorphism of the G protein coupled receptor kinase 5 is associated with left ventricular apical ballooning syndrome. Eur J Heart Fail. 2010;12:13–6.

    CAS  PubMed  Google Scholar 

  174. Goodloe AH, Evans JM, Middha S, Prasad A, Olson TM. Characterizing genetic variation of adrenergic signalling pathways in Takotsubo (stress) cardiomyopathy exomes. Eur J Heart Fail. 2014;16: 942–9.

    CAS  PubMed  Google Scholar 

  175. Eitel I, Moeller C, Munz M, Stiermaier T, Meitinger T, Thiele H, Erdmann J. Genome-wide association study in takotsubo syndrome – preliminary results and future directions. Int J Cardiol. 2017;236:335–9.

    PubMed  Google Scholar 

  176. Noseworthy PA, Newton-Cheh C. Genetic determinants of sudden cardiac death. Circulation. 2008;118: 1854–63.

    PubMed  Google Scholar 

  177. Milano A, Blom MT, Lodder EM, van Hoeijen DA, Barc J, Koopmann TT, Bardai A, Beekman L, Lichtner P, van den Berg MP, Wilde AA, Bezzina CR, Tan HL. Sudden cardiac arrest and rare genetic variants in the community. Circ Cardiovasc Genet. 2016;9:147–53.

    PubMed  Google Scholar 

  178. Ashar FN, Mitchell RN, Albert CM, Newton-Cheh C, Brody JA, Müller-Nurasyid M, Moes A, Meitinger T, Mak A, Huikuri H, Junttila MJ, Goyette P, Pulit SL, Pazoki R, Tanck MW, Blom MT, Zhao X, Havulinna AS, Jabbari R, Glinge C, Tragante V, Escher SA, Chakravarti A, Ehret G, Coresh J, Li M, Prineas RJ, Franco OH, Kwok PY, Lumley T, Dumas F, McKnight B, Rotter JI, Lemaitre RN, Heckbert SR, O’Donnell CJ, Hwang SJ, Tardif JC, VanDenburgh M, Uitterlinden AG, Hofman A, Stricker BHC, de Bakker PIW, Franks PW, Jansson JH, Asselbergs FW, Halushka MK, Maleszewski JJ, Tfelt-Hansen J, Engstrom T, Salomaa V, Virmani R, Kolodgie F, AAM W, Tan HL, Bezzina CR, Eijgelsheim M, Rioux JD, Jouven X, Kaab S, Psaty BM, Siscovick DS, Arking DE, Sotoodehnia N. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J. 2018;39:3961–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Burke A, Creighton W, Mont E, Li L, Hogan S, Kutys R, Fowler D, Virmani R. Role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks. Circulation. 2005;112:798–802.

    CAS  PubMed  Google Scholar 

  180. Marsman RF, Bezzina CR, Freiberg F, Verkerk AO, Adriaens ME, Podliesna S, Chen C, Purfurst B, Spallek B, Koopmann TT, Baczko I, Dos Remedios CG, George AL Jr, Bishopric NH, Lodder EM, de Bakker JM, Fischer R, Coronel R, Wilde AA, Gotthardt M, Remme CA. Coxsackie and adenovirus receptor is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia. J Am Coll Cardiol. 2014;63: 549–59.

    CAS  PubMed  Google Scholar 

  181. Stecker EC, Sono M, Wallace E, Gunson K, Jui J, Chugh SS. Allelic variants of SCN5A and risk of sudden cardiac arrest in patients with coronary artery disease. Heart Rhythm. 2006;3:697–700.

    PubMed  Google Scholar 

  182. Westaway SK, Reinier K, Huertas-Vazquez A, Evanado A, Teodorescu C, Navarro J, Sinner MF, Gunson K, Jui J, Spooner P, Kääb S, Chugh SS. Common variants in CASQ2, GPD1L, and NOS1AP are significantly associated with risk of sudden death in patients with coronary artery disease. Circ Cardiovasc Genet. 2011;4:397–402.

    PubMed  PubMed Central  Google Scholar 

  183. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science. 2002;297:1333–6.

    CAS  PubMed  Google Scholar 

  184. Albert CM, MacRae CA, Chasman DI, VanDenburgh M, Buring JE, Manson JE, Cook NR, Newton-Cheh C. Common variants in cardiac ion channel genes are associated with sudden cardiac death. Circ Arrhythm Electrophysiol. 2010;3:222–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Mikkelsson J, Perola M, Laippala P, Penttila A, Karhunen PJ. Glycoprotein IIIa Pl(A1/A2) polymorphism and sudden cardiac death. J Am Coll Cardiol. 2000;36:1317–23.

    CAS  PubMed  Google Scholar 

  186. Lemaitre RN, Johnson CO, Hesselson S, Sotoodehnia N, McKnight B, Sitlani CM, Rea TD, King IB, Kwok PY, Mak A, Li G, Brody J, Larson E, Mozaffarian D, Psaty BM, Huertas-Vazquez A, Tardif JC, Albert CM, Lyytikainen LP, Arking DE, Kääb S, Huikuri HV, Krijthe BP, Eijgelsheim M, Wang YA, Reinier K, Lehtimaki T, Pulit SL, Brugada R, Muller-Nurasyid M, Newton-Cheh CH, Karhunen PJ, Stricker BH, Goyette P, Rotter JI, Chugh SS, Chakravarti A, Jouven X, Siscovick DS. Common variation in fatty acid metabolic genes and risk of incident sudden cardiac arrest. Heart Rhythm. 2014;11:471–7.

    PubMed  PubMed Central  Google Scholar 

  187. Sotoodehnia N, Li G, Johnson CO, Lemaitre RN, Rice KM, Rea TD, Siscovick DS. Genetic variation in angiotensin-converting enzyme-related pathways associated with sudden cardiac arrest risk. Heart Rhythm. 2009;6:1306–14.

    PubMed  PubMed Central  Google Scholar 

  188. Albert CM, Nam EG, Rimm EB, Jin HW, Hajjar RJ, Hunter DJ, MacRae CA, Ellinor PT. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation. 2008;117:16–23.

    CAS  PubMed  Google Scholar 

  189. Marcsa B, Denes R, Voros K, Racz G, Sasvari-Szekely M, Ronai Z, Toro K, Keszler G. A common polymorphism of the human cardiac sodium channel alpha subunit (SCN5A) gene is associated with sudden cardiac death in chronic ischemic heart disease. PLoS One. 2015;10:e0132137.

    PubMed  PubMed Central  Google Scholar 

  190. Jabbari R, Glinge C, Jabbari J, Risgaard B, Winkel BG, Terkelsen CJ, Tilsted HH, Jensen LO, Hougaard M, Haunso S, Engstrom T, Albert CM, Tfelt-Hansen J. A common variant in SCN5A and the risk of ventricular fibrillation caused by first ST-segment elevation myocardial infarction. PLoS One. 2017;12:e0170193.

    PubMed  PubMed Central  Google Scholar 

  191. Lahtinen AM, Noseworthy PA, Havulinna AS, Jula A, Karhunen PJ, Kettunen J, Perola M, Kontula K, Newton-Cheh C, Salomaa V. Common genetic variants associated with sudden cardiac death: the FinSCDgen study. PLoS One. 2012;7:e41675.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Bezzina CR, Pazoki R, Bardai A, Marsman RF, de Jong J, Blom MT, Scicluna BP, Jukema JW, Bindraban NR, Lichtner P, Pfeufer A, Bishopric NH, Roden DM, Meitinger T, Chugh SS, Myerburg RJ, Jouven X, Kääb S, Dekker LRC, Tan HL, Tanck MWT, Wilde AAM. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat Genet. 2010;42:688–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Bugert P, Elmas E, Stach K, Weiss C, Kalsch T, Dobrev D, Borggrefe M. No evidence for an association between the rs2824292 variant at chromosome 21q21 and ventricular fibrillation during acute myocardial infarction in a German population. Clin Chem Lab Med. 2011;49:1237–9.

    CAS  PubMed  Google Scholar 

  194. Arking DE, Junttila MJ, Goyette P, Huertas-Vazquez A, Eijgelsheim M, Blom MT, Newton-Cheh C, Reinier K, Teodorescu C, Uy-Evanado A, Carter-Monroe N, Kaikkonen KS, Kortelainen ML, Boucher G, Lagacé C, Moes A, Zhao X, Kolodgie F, Rivadeneira F, Hofman A, Witteman JC, Uitterlinden AG, Marsman RF, Pazoki R, Bardai A, Koster RW, Dehghan A, Hwang SJ, Bhatnagar P, Post W, Hilton G, Prineas RJ, Li M, Köttgen A, Ehret G, Boerwinkle E, Coresh J, Kao WH, Psaty BM, Tomaselli GF, Sotoodehnia N, Siscovick DS, Burke GL, Marbán E, Spooner PM, Cupples LA, Jui J, Gunson K, Kesäniemi YA, Wilde AA, Tardif JC, O’Donnell CJ, Bezzina CR, Virmani R, Stricker BH, Tan HL, Albert CM, Chakravarti A, Rioux JD, Huikuri HV, Chugh SS. Identification of a sudden cardiac death susceptibility locus at 2q24.2 through genome-wide association in European ancestry individuals. PLoS Genet. 2011;7:e1002158.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Wieneke H, Svendsen JH, Lande J, Spencker S, Martinez JG, Strohmer B, Toivonen L, Le Marec H, Garcia-Fernandez FJ, Corrado D, Huertas-Vazquez A, Uy-Evanado A, Rusinaru C, Reinier K, Foldesi C, Hulak W, Chugh SS, Siffert W. Polymorphisms in the GNAS gene as predictors of ventricular tachyarrhythmias and sudden cardiac death: results from the DISCOVERY trial and Oregon Sudden Unexpected Death Study. J Am Heart Assoc. 2016;5:e003905.

    Google Scholar 

  196. Huertas-Vazquez A, Nelson CP, Guo X, Reinier K, Uy-Evanado A, Teodorescu C, Ayala J, Jerger K, Chugh H, WTCCC, Braund PS, Deloukas P, Hall AS, Balmforth AJ, Jones M, Taylor KD, Pulit SL, Newton-Cheh C, Gunson K, Jui J, Rotter JI, Albert CM, Samani NJ, Chugh SS. Novel loci associated with increased risk of sudden cardiac death in the context of coronary artery disease. PLoS One. 2013;8:e59905.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Malik-Hall M, Poon WY, Baker MD, Wood JN, Okuse K. Sensory neuron proteins interact with the intracellular domains of sodium channel NaV1.8. Brain Res Mol Brain Res. 2003;110:298–304.

    CAS  PubMed  Google Scholar 

  198. Hernesniemi JA, Lyytikäinen LP, Oksala N, Seppälä I, Kleber ME, Mononen N, März W, Mikkelsson J, Pessi T, Louhelainen AM, Martiskainen M, Nikus K, Klopp N, Waldenberger M, Illig T, Kähönen M, Laaksonen R, Karhunen PJ, Lehtimäki T. Predicting sudden cardiac death using common genetic risk variants for coronary artery disease. Eur Heart J. 2015;36:1669–75.

    PubMed  Google Scholar 

  199. Chadha PS, Zunke F, Davis AJ, Jepps TA, Linders JT, Schwake M, Towart R, Greenwood IA. Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries. Br J Pharmacol. 2012;166:1377–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. van der Linde HJ, Van Deuren B, Somers Y, Teisman A, Drinkenburg WH, Gallacher DJ. EEG in the FEAB model: measurement of electroencephalographical burst suppression and seizure liability in safety pharmacology. J Pharmacol Toxicol Methods. 2011;63:96–101.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel M. A. ter Bekke .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

ter Bekke, R.M.A., Volders, P.G.A. (2020). Genetic Determinants Affecting the Relationship Between the Autonomic Nervous System and Sudden Death. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-28008-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28008-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28007-9

  • Online ISBN: 978-3-030-28008-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics