Skip to main content

Finding Strongly Correlated Trends in Dynamic Attributed Graphs

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11708))

Included in the following conference series:

Abstract

Discovering patterns in dynamic attributed graphs allows to capture how attribute values and graph structures changes over time. This allows to understand how a graph has evolved and may change in the future, to support decision-making. But an important limitation of current studies is that they mainly select patterns based on their frequency. Thus, they may find many frequent but weakly correlated patterns. To discover strongly correlated patterns, this paper proposes a novel significance measure named Sequence Virtual Growth Rate. It allows evaluating if a pattern represents entities that are correlated in terms of their proximity in a graph over time. Based on this measure a novel type of graph patterns is defined called Significant Trend Sequence. To efficiently mine these patterns, an algorithm named TSeqMiner is proposed, which relies on a novel upper bound and pruning strategy to reduce the search space. Experiments show that the algorithm is efficient and can identify interesting patterns in social network and spatio-temporal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Wang, H. (eds.): Managing and Mining Graph Data. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-6045-0

    Book  MATH  Google Scholar 

  2. Ahmed, R., Karypis, G.: Algorithms for mining the evolution of conserved relational states in dynamic networks. Knowl. Inf. Syst. 33(3), 603–630 (2012)

    Article  Google Scholar 

  3. Cheng, Z., Flouvat, F., Selmaoui-Folcher, N.: Mining recurrent patterns in a dynamic attributed graph. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 631–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57529-2_49

    Chapter  Google Scholar 

  4. Desmier, E., Plantevit, M., Robardet, C., Boulicaut, J.-F.: Trend mining in dynamic attributed graphs. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 654–669. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_42

    Chapter  Google Scholar 

  5. Desmier, E., Plantevit, M., Robardet, C., Boulicaut, J.-F.: Cohesive co-evolution patterns in dynamic attributed graphs. In: Ganascia, J.-G., Lenca, P., Petit, J.-M. (eds.) DS 2012. LNCS (LNAI), vol. 7569, pp. 110–124. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33492-4_11

    Chapter  Google Scholar 

  6. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: Proceedngs of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 43–52. ACM (1999)

    Google Scholar 

  7. Fassetti, F., Rombo, S.E., Serrao, C.: Discovering discriminative graph patterns from gene expression data. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 23–30. ACM (2016)

    Google Scholar 

  8. Fournier-Viger, P., Li, X., Yao, J., Lin, J.C.-W.: Interactive discovery of statistically significant itemsets. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds.) IEA/AIE 2018. LNCS (LNAI), vol. 10868, pp. 101–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92058-0_10

    Chapter  Google Scholar 

  9. Fournier-Viger, P., et al.: The SPMF open-source data mining library version 2. In: Berendt, B., et al. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 36–40. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_8

    Chapter  Google Scholar 

  10. Fournier-Viger, P., Lin, J.C.W., Kiran, U.R., Koh, Y.S.: A survey of sequential pattern mining. Data Sci. Pattern Recogn. 1(1), 54–77 (2017)

    Google Scholar 

  11. Fournier-Viger, P., Zhang, Y., Lin, J.C.W., Fujita, H., Koh, Y.S.: Mining local and peak high utility itemsets. Inf. Sci. 481, 344–367 (2019)

    Article  MathSciNet  Google Scholar 

  12. Holder, L.B., Cook, D.J., et al.: Learning patterns in the dynamics of biological networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 977–986. ACM (2009)

    Google Scholar 

  13. Huang, Y., Zhang, L., Zhang, P.: A framework for mining sequential patterns from spatio-temporal event data sets. IEEE Trans. Knowl. Data Eng. 4, 433–448 (2007)

    Google Scholar 

  14. Jin, R., McCallen, S., Almaas, E.: Trend motif: a graph mining approach for analysis of dynamic complex networks. In: Proceedings of the 7th IEEE International Conference on Data Mining, pp. 541–546. IEEE (2007)

    Google Scholar 

  15. Kaytoue, M., Pitarch, Y., Plantevit, M., Robardet, C.: Triggering patterns of topology changes in dynamic graphs. In: Proceedings of the 6th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 158–165. IEEE/ACM (2014)

    Google Scholar 

  16. Lv, T., Gao, H., Li, X., Yang, S., Hanzo, L.: Space-time hierarchical-graph based cooperative localization in wireless sensor networks. IEEE Trans. Sig. Process. 64(2), 322–334 (2016)

    Article  MathSciNet  Google Scholar 

  17. Sanhes, J., Flouvat, F., Selmaoui-Folcher, N., Pasquier, C., Boulicaut, J.F.: Weighted path as a condensed pattern in a single attributed dag. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  18. Wen, Y.-T., Fan, Y.Y., Peng, W.-C.: Mining of location-based social networks for spatio-temporal social influence. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 799–810. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_62

    Chapter  Google Scholar 

  19. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Fournier-Viger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fournier-Viger, P., Cheng, C., Cheng, Z., Lin, J.CW., Selmaoui-Folcher, N. (2019). Finding Strongly Correlated Trends in Dynamic Attributed Graphs. In: Ordonez, C., Song, IY., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2019. Lecture Notes in Computer Science(), vol 11708. Springer, Cham. https://doi.org/10.1007/978-3-030-27520-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27520-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27519-8

  • Online ISBN: 978-3-030-27520-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics