Skip to main content

The Role of Caveolin-1 in Retinal Inflammation

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

Although the retina resides within the immune-protected ocular environment, inflammatory processes mounted in the eye can lead to retinal damage. Unchecked chronic ocular inflammation leads to retinal damage. Thus, retinal degenerative diseases that result in chronic inflammation accelerate retinal tissue destruction and vision loss. Treatments for chronic retinal inflammation involve corticosteroid administration, which has been associated with glaucoma and cataract formation. Therefore, we must consider novel, alternative treatments. Here, we provide a brief review of our current understanding of chronic innate inflammatory processes in retinal degeneration and the complex role of a putative inflammatory regulator, Caveolin-1 (Cav1). Furthermore, we suggest that the complex role of Cav1 in retinal inflammatory modulation is likely dictated by cell type-specific subcellular localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berg-von der Emde K, Wolburg H (1989) Muller (glial) cells but not astrocytes in the retina of the goldfish possess orthogonal arrays of particles. Glia 2:458–469

    Article  CAS  Google Scholar 

  • Caldwell RB, Slapnick SM (1992) Freeze-fracture and lanthanum studies of the retinal microvasculature in diabetic rats. Invest Ophthalmol Vis Sci 33:1610–1619

    CAS  PubMed  Google Scholar 

  • Chang CF, Chen SF, Lee TS et al (2011) Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol 178:1749–1761

    Article  CAS  Google Scholar 

  • Cheng JPX, Nichols BJ (2016) Caveolae: one function or many? Trends Cell Biol 26:177–189

    Article  CAS  Google Scholar 

  • Chow BW, Gu C (2017) Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron 93:1325–33.e3

    Article  CAS  Google Scholar 

  • Cohen AW, Park DS, Woodman SE et al (2003) Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457–C474

    Article  CAS  Google Scholar 

  • Cohen AW, Hnasko R, Schubert W et al (2004a) Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341–1379

    Article  CAS  Google Scholar 

  • Cohen AW, Razani B, Schubert W et al (2004b) Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53:1261–1270

    Article  CAS  Google Scholar 

  • Elliott MH, Fliesler SJ, Ghalayini AJ (2003) Cholesterol-dependent association of caveolin-1 with the transducin alpha subunit in bovine photoreceptor rod outer segments: disruption by cyclodextrin and guanosine 5′-O-(3-thiotriphosphate). Biochemistry 42:7892–7903

    Article  CAS  Google Scholar 

  • Feldman N, Rotter-Maskowitz A, Okun E (2015) DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev 24:29–39

    Article  CAS  Google Scholar 

  • Forrester JV (2013) Bowman lecture on the role of inflammation in degenerative disease of the eye. Eye 27(3):340–352

    Google Scholar 

  • Gardiner TA, Archer DB (1986) Endocytosis in the retinal and choroidal microcirculation. Br J Ophthalmol 70:361–372

    Article  CAS  Google Scholar 

  • Gu X, Fliesler SJ, Zhao YY et al (2014) Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration. Am J Pathol 184:541–555

    Article  CAS  Google Scholar 

  • Gustavsson J, Parpal S, Karlsson M et al (1999) Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 13:1961–1971

    Article  CAS  Google Scholar 

  • Jasmin JF, Malhotra S, Singh Dhallu M et al (2007) Caveolin-1 deficiency increases cerebral ischemic injury. Circ Res 100:721–729

    Article  CAS  Google Scholar 

  • Kevany BM, Palczewski K (2010) Phagocytosis of Retinal Rod and Cone Photoreceptors. Physiology 25(1):8–15

    Google Scholar 

  • Lakk M, Yarishkin O, Baumann JM et al (2017) Cholesterol regulates polymodal sensory transduction in Muller glia. Glia 65:2038–2050

    Article  Google Scholar 

  • Li X, McClellan ME, Tanito M et al (2012) Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 287:16424–16434

    Article  CAS  Google Scholar 

  • Li X, Gu X, Boyce TM et al (2014) Caveolin-1 increases proinflammatory chemoattractants and blood-retinal barrier breakdown but decreases leukocyte recruitment in inflammation. Invest Ophthalmol Vis Sci 55:6224–6234

    Article  CAS  Google Scholar 

  • Moon H, Lee CS, Inder KL et al (2014) PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene 33:3561–3570

    Article  CAS  Google Scholar 

  • Nakanishi M, Grebe R, Bhutto IA et al (2016) Albumen transport to Bruch’s membrane and RPE by choriocapillaris caveolae. Invest Ophthalmol Vis Sci 57:2213–2224

    Article  CAS  Google Scholar 

  • Oliveira SDS, Castellon M, Chen J et al (2017) Inflammation-induced caveolin-1 and BMPRII depletion promotes endothelial dysfunction and TGF-beta-driven pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 312:L760–L771

    Article  Google Scholar 

  • Phulke S, Kaushik S, Kaur S et al (2017) Steroid-induced glaucoma: an avoidable irreversible blindness. J Curr Glaucoma Pract 11:67–72

    Article  Google Scholar 

  • Raviola G, Butler JM (1983) Unidirectional vesicular transport mechanism in retinal vessels. Invest Ophthalmol Vis Sci 24:1465–1474

    CAS  PubMed  Google Scholar 

  • Razani B, Engelman JA, Wang XB et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  CAS  Google Scholar 

  • Razani B, Combs TP, Wang XB et al (2002) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277:8635–8647

    Article  CAS  Google Scholar 

  • Reagan AM, Gu X, Paudel S et al (2018) Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency. Neurobiol Aging 71:1–12

    Article  CAS  Google Scholar 

  • Schubert W, Frank PG, Woodman SE et al (2002) Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

    Article  CAS  Google Scholar 

  • Sethna S, Chamakkala T, Gu X et al (2016) Regulation of phagolysosomal digestion by caveolin-1 of the retinal pigment epithelium is essential for vision. J Biol Chem 291:6494–6506

    Article  CAS  Google Scholar 

  • Shapouri-Moghaddam A, Mohammadian S, Vazini H et al (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440

    Article  CAS  Google Scholar 

  • Shivshankar P, Brampton C, Miyasato S et al (2012) Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am J Respir Cell Mol Biol 47:28–36

    Article  CAS  Google Scholar 

  • Tahir SA, Yang G, Ebara S et al (2001) Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res 61:3882–3885

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang VM, Chan CC (2011) The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye (Lond) 25:127–139

    Article  Google Scholar 

  • Wisniewska-Kruk J, van der Wijk AE, van Veen HA et al (2016) Plasmalemma vesicle-associated protein has a key role in blood-retinal barrier loss. Am J Pathol 186:1044–1054

    Article  CAS  Google Scholar 

  • Yu L, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 14:2592–2603

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jami M. Gurley or Michael H. Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurley, J.M., Elliott, M.H. (2019). The Role of Caveolin-1 in Retinal Inflammation. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_28

Download citation

Publish with us

Policies and ethics