Skip to main content

Dysflective Cones

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

Retinal imaging has advanced to enable noninvasive in vivo visualization of macular photoreceptors with cellular resolution. Images of retinal structure are best interpreted in the context of visual function, but clinical measures of visual function lack resolution on the scale of individual cells. Combined with cross-sectional measures of retinal structure acquired with optical coherence tomography (OCT), macular photoreceptor function can be evaluated using visual acuity and fundus-guided microperimetry, but the resolution of these measures is limited to relatively large retinal areas. By incorporating adaptive optics correction of aberrations in light entering and exiting the pupil, individual photoreceptors can be visualized and stimulated to assess structure and function. Discrepancy between structural images and visual function can shed light on the origin of visible features and their relation to visual function. Dysflective cones, cones with abnormal waveguiding properties on confocal adaptive optics scanning laser ophthalmoscopy (AOSLO) images and measurable function, provide insight into the visual significance of features in retinal images and may facilitate identification of patients who could benefit from therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Battu R, Khanna A, Hegde B et al (2015) Correlation of structure and function of the macula in patients with retinitis pigmentosa. Eye (Lond) 29:895–901

    Article  CAS  Google Scholar 

  • Birch DG, Wen Y, Locke K et al (2011) Rod sensitivity, cone sensitivity, and photoreceptor layer thickness in retinal degenerative diseases. Invest Ophthalmol Vis Sci 52:7141–7147

    Article  Google Scholar 

  • Birch DG, Bennett LD, Duncan JL et al (2016) Long-term follow-up of patients with retinitis pigmentosa (RP) receiving intraocular ciliary neurotrophic factor implants. Am J Ophthalmol 170:10–14

    Article  Google Scholar 

  • Birch DG, Locke KG, Wen Y et al (2013) Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa. JAMA Ophthalmol 131:1143–1150

    Article  Google Scholar 

  • Bittner AK, Iftikhar MH, Dagnelie G (2011a) Test-retest, within-visit variability of Goldmann visual fields in retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:8042–8046

    Article  Google Scholar 

  • Bittner AK, Ibrahim MA, Haythornthwaite JA et al (2011b) Vision test variability in retinitis pigmentosa and psychosocial factors. Optom Vis Sci 88:1496–1506

    Article  Google Scholar 

  • Busskamp V, Picaud S, Sahel JA et al (2012) Optogenetic therapy for retinitis pigmentosa. Gene Ther 19:169–175

    Article  CAS  Google Scholar 

  • Choi SS, Doble N, Hardy JL et al (2006) In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. Invest Ophthalmol Vis Sci 47:2080–2092

    Article  Google Scholar 

  • Cideciyan AV, Swider M, Aleman TS et al (2012) Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure for ABCA4-associated retinopathy trials. Invest Ophthalmol Vis Sci 53:841–852

    Article  CAS  Google Scholar 

  • Csaky K, Ferris F 3rd, Chew EY et al (2017) Report from the NEI/FDA endpoints workshop on age-related macular degeneration and inherited retinal diseases. Invest Ophthalmol Vis Sci 58:3456–3463

    Article  Google Scholar 

  • Duncan JL, Zhang Y, Gandhi J et al (2007) High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. Invest Ophthalmol Vis Sci 48:3283–3291

    Article  Google Scholar 

  • Duncan JL, Ratnam K, Birch DG et al (2011) Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene. Invest Ophthalmol Vis Sci 52:9614–9623

    Article  CAS  Google Scholar 

  • Foote KG, Loumou P, Griffin S et al (2018) Relationship between foveal cone structure and visual acuity measured with adaptive optics scanning laser ophthalmoscopy in retinal degeneration. Invest Ophthalmol Vis Sci 59:3385–3393

    Article  Google Scholar 

  • Foote KG, de la Huerta I, Gustafson J et al (2017) Correlation of cone spacing with retinal thickness and microperimetry in patients with inherited retinal degenerations. Invest Ophthalmol Vis Sci 58:ARVO E-Abstract #310

    Google Scholar 

  • Hood DC, Lazow MA, Locke KG et al (2011a) The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:101–108

    Article  Google Scholar 

  • Hood DC, Ramachandran R, Holopigian K et al (2011b) Method for deriving visual field boundaries from OCT scans of patients with retinitis pigmentosa. Biomed Opt Express 2:1106–1114

    Article  Google Scholar 

  • Langlo CS, Patterson EJ, Higgins BP et al (2016) Residual foveal cone structure in CNGB3-associated achromatopsia. Invest Ophthalmol Vis Sci 57:3984–3995

    Article  Google Scholar 

  • Li KY, Tiruveedhula P, Roorda A (2010) Intersubject variability of foveal cone photoreceptor density in relation to eye length. Invest Ophthalmol Vis Sci 51:6858–6867

    Article  Google Scholar 

  • Midena E, Vujosevic S, Convento E et al (2007) Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br J Ophthalmol 91:1499–1503

    Article  Google Scholar 

  • Miloudi C, Rossant F, Bloch I et al (2015) The negative cone mosaic: a new manifestation of the optical stiles-crawford effect in normal eyes. Invest Ophthalmol Vis Sci 56:7043–7050

    Article  Google Scholar 

  • Morgan JI (2016) The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay. Ophthalmic Physiol Opt 36:218–239

    Article  Google Scholar 

  • Morgan JI, Han G, Klinman E et al (2014) High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Invest Ophthalmol Vis Sci 55:6381–6397

    Article  Google Scholar 

  • Pilotto E, Guidolin F, Convento E et al (2013) Fundus autofluorescence and microperimetry in progressing geographic atrophy secondary to age-related macular degeneration. Br J Ophthalmol 97:622–626

    Article  Google Scholar 

  • Ratnam K, Carroll J, Porco TC et al (2013) Relationship between foveal cone structure and clinical measures of visual function in patients with inherited retinal degenerations. Invest Ophthalmol Vis Sci 54:5836–5847

    Article  Google Scholar 

  • Roorda A, Duncan JL (2015) Adaptive optics ophthalmoscopy. Ann Rev Vis Sci 1:19–50

    Article  Google Scholar 

  • Roorda A, Romero-Borja F, Donnelly W III et al (2002) Adaptive optics scanning laser ophthalmoscopy. Opt Express 10:405–412

    Article  Google Scholar 

  • Schmitz-Valckenberg S, Bultmann S, Dreyhaupt J et al (2004) Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:4470–4476

    Article  Google Scholar 

  • Scholl HP, Bellmann C, Dandekar SS et al (2004) Photopic and scotopic fine matrix mapping of retinal areas of increased fundus autofluorescence in patients with age-related maculopathy. Invest Ophthalmol Vis Sci 45:574–583

    Article  Google Scholar 

  • Schonbach EM, Wolfson Y, Strauss RW et al (2017) Macular sensitivity measured with microperimetry in Stargardt disease in the progression of atrophy secondary to Stargardt disease (ProgStar) study: report no. 7. JAMA Ophthalmol 135:696–703

    Article  Google Scholar 

  • Scoles D, Sulai YN, Langlo CS et al (2014) In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci 55:4244–4251

    Article  Google Scholar 

  • Scoles D, Flatter JA, Cooper RF et al (2016) Assessing photoreceptor structure associated with ellipsoid zone disruptions visualized with optical coherence tomography. Retina 36:91–103

    Article  Google Scholar 

  • Testa F, Rossi S, Sodi A et al (2012) Correlation between photoreceptor layer integrity and visual function in patients with Stargardt disease: implications for gene therapy. Invest Ophthalmol Vis Sci 53:4409–4415

    Article  CAS  Google Scholar 

  • Tu JH, Foote KG, Lujan BJ et al (2017) Dysflective cones: visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis. Am J Ophthalmol Case Rep 7:14–19

    Article  Google Scholar 

  • Tuten WS, Tiruveedhula P, Roorda A (2012) Adaptive optics scanning laser ophthalmoscope-based microperimetry. Optometry Vis Sci 89:563–574

    Article  Google Scholar 

  • Wang Q, Tuten WS, Lujan BJ et al (2015) Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Invest Ophthalmol Vis Sci 56:778–786

    Article  Google Scholar 

  • Wilk MA, Dubis AM, Cooper RF et al (2017) Assessing the spatial relationship between fixation and foveal specializations. Vis Res 132:53–61

    Article  Google Scholar 

  • Wolfing JI, Chung M, Carroll J et al (2006) High-resolution retinal imaging of cone-rod dystrophy. Ophthalmology 113:1014–1019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacque L. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duncan, J.L., Roorda, A. (2019). Dysflective Cones. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_22

Download citation

Publish with us

Policies and ethics