Skip to main content

Template Mapping Using Adaptive Splines and Optimization of the Parameterization

  • Chapter
  • First Online:
Advanced Methods for Geometric Modeling and Numerical Simulation

Part of the book series: Springer INdAM Series ((SINDAMS,volume 35))

Abstract

We consider the construction of a spline map (a volumetric deformation) that transforms a template, which is given in the domain, into a target shape. More precisely, the domain is equipped with a set of surface patches (the template skeleton) and target patches for some of them (which are called the constraining patches) are specified. The constructed spline map approximately transforms the constraining patches into the associated target patches. Possible applications include isogeometric segmentation and parameterization of the computational domain. In particular, the approach should be useful when performing isogeometric segmentation and parameterization for a large class of computational domains possessing similar shapes. We present a solution approach, which is based on least-squares fitting. In order to deal with the influence of the parameterization, the well-established approaches of point and tangent distance minimization are employed for the iterative solution of the resulting nonlinear optimization problems. Additionally, we enrich the approach with spline space refinement. The efficiency and performance of the approach are investigated experimentally. We demonstrate that the optimization of the parameterization, which is used in the point or tangent distance minimization, is an essential step of the procedure. In addition, we use adaptive spline refinement in order to save computational resources. The proposed template mapping approach is also applied to a case of industrial interest, as well as to a volumetric example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Different constraints are present at patch boundaries.

References

  1. Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.V.: Swept volume parameterization for isogeometric analysis. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII: 13th IMA International Conference. Lecture Notes in Computer Science, vol. 5654, pp. 19–44. Springer, Berlin (2009)

    Chapter  Google Scholar 

  2. Al Akhras, H., Elguedj, T., Gravouil, A., Rochette, M.: Towards an automatic isogeometric analysis suitable trivariate models generation–application to geometric parametric analysis. Comput. Methods Appl. Mech. Eng. 316, 623–645 (2017)

    Article  MathSciNet  Google Scholar 

  3. Arioli, C., Shamanskiy, A., Klinkel, S., Simeon, B.: Scaled boundary parameterizations in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 349, 576–594 (2019)

    Article  MathSciNet  Google Scholar 

  4. Blake, A., Isard, M.: Active Contours. Springer, London (1998)

    Book  Google Scholar 

  5. Bo, P., Ling, R., Wang, W.: A revisit to fitting parametric surfaces to point clouds. Comput. Graph. 36, 534–540 (2012)

    Article  Google Scholar 

  6. Buchegger, F., Jüttler, B.: Planar multi-patch domain parameterization via patch adjacency graphs. Comput. Aided Des. 82, 2–12 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cohen, E., Martin, T., Kirby, R.M., Lyche, T., Riesenfeld, R.F.: Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 334–356 (2010)

    Article  MathSciNet  Google Scholar 

  8. Escobar, J.M., Cascón, J.M., Rodríguez, E., Montenegro, R.: A new approach to solid modeling with trivariate T-splines based on mesh optimization. Comput. Methods Appl. Mech. Eng. 200, 3210–3222 (2011)

    Article  MathSciNet  Google Scholar 

  9. Falini, A., Jüttler, B.: THB-splines multi-patch parameterization for multiply-connected planar domains via template segmentation. J. Comput. Appl. Math. 349, 390–402 (2019)

    Article  MathSciNet  Google Scholar 

  10. Falini, A., Špeh, J., Jüttler, B.: Planar domain parameterization with THB-splines. Comput. Aided Geom. Des. 35–36, 95–108 (2015)

    Article  MathSciNet  Google Scholar 

  11. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. ACM SIGGRAPH Comput. Graph. 22, 205–212 (1988)

    Article  Google Scholar 

  12. Frey, P.J., George, P.L.: Mesh Generation: Application to Finite Elements. Wiley, New York (2008)

    Google Scholar 

  13. Giannelli, C., Jüttler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Špeh, J.: THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016)

    Article  MathSciNet  Google Scholar 

  14. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)

    Article  MathSciNet  Google Scholar 

  15. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40, 459–490 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gravesen, J., Evgrafov, A., Nguyen, D.M., Nørtoft, P.: Planar parametrization in isogeometric analysis. In: Floater, M., Lyche, T., Mazure, M.L., Mørken, K., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces: 8th International Conference. Lecture Notes in Computer Science, vol. 8177, pp. 189–212. Springer, Berlin (2014)

    Chapter  Google Scholar 

  17. Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 163–172. Vanderbilt University Press, Nashville (1997)

    MATH  Google Scholar 

  18. Haberleitner, M., Jüttler, B., Scott, M.A., Thomas, D.C.: Isogeometric analysis: representation of geometry. Encyclopedia of Computational Mechanics. Wiley, New York (2017)

    Google Scholar 

  19. Hinz, J., Möller, M., Vuik, C.: Elliptic grid generation techniques in the framework of isogeometric analysis applications. Comput. Aided Geom. Des. 65, 48–75 (2018)

    Article  MathSciNet  Google Scholar 

  20. Hinz, J., Möller, M., Vuik, C.: Spline-based parameterization techniques for twin-screw machine geometries. IOP Conf. Ser. Mater. Sci. Eng. 425(012030) (2018)

    Article  Google Scholar 

  21. Hoschek, J.: Intrinsic parametrization for approximation. Comput. Aided Geom. Des. 5, 27–31 (1988)

    Article  MathSciNet  Google Scholar 

  22. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  23. Jüttler, B., Langer, U., Mantzaflaris, A., Moore, S., Zulehner, W.: Geometry + simulation modules: implementing isogeometric analysis. PAMM 14, 961–962 (2014)

    Article  Google Scholar 

  24. Kapl, M., Sangalli, G., Takacs, T.: Construction of analysis-suitable \({G}^1\) planar multi-patch parameterizations. Comput. Aided Des. 97, 41–55 (2018)

    Article  Google Scholar 

  25. Kelley, C.T.: Iterative Methods for Optimization. Frontiers in Applied Mathematics, vol. 18. Society for Industrial and Applied Mathematics (1999)

    Google Scholar 

  26. Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adaptive CAD model (re-)construction with THB-splines. Graph. Models 76, 273–288 (2014)

    Article  Google Scholar 

  27. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)

    MATH  Google Scholar 

  28. Liseikin, D.V.: Grid Generation Methods. Springer, Netherlands (2010)

    Book  Google Scholar 

  29. Liu, L., Zhang, Y., Hughes, T.J.R., Scott, M.A., Sederberg, T.W.: Volumetric T-spline construction using Boolean operations. Eng. Comput. 30, 425–439 (2014)

    Article  Google Scholar 

  30. Möller, M., Hinz, J.: Isogeometric analysis framework for the numerical simulation of rotary screw machines. I. General concept and early applications. IOP Conf. Ser. Mater. Sci. Eng. 425(012032) (2018)

    Article  Google Scholar 

  31. Nian, X., Chen, F.: Planar domain parameterization for isogeometric analysis based on Teichmüller mapping. Comput. Methods Appl. Mech. Eng. 311, 41–55 (2016)

    Article  Google Scholar 

  32. Pan, M., Chen, F., Tong, W.: Low-rank parameterization of planar domains for isogeometric analysis. Comput. Aided Geom. Des. 63, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  33. Pauley, M., Nguyen, D.M., Mayer, D., Špeh, J., Weeger, O., Jüttler, B.: The isogeometric segmentation pipeline. In: Jüttler, B., Simeon, B. (eds.) Isogeometric Analysis and Applications 2014. Lecture Notes in Computational Science and Engineering, vol. 107. Springer, Cham (2015)

    Google Scholar 

  34. Pottmann, H., Leopoldseder, S.: A concept for parametric surface fitting which avoids the parametrization problem. Comput. Aided Geom. Des. 20, 343–362 (2003)

    Article  MathSciNet  Google Scholar 

  35. Sangalli, G., Takacs, T., Vázquez, R.: Unstructured spline spaces for isogeometric analysis based on spline manifolds. Comput. Aided Geom. Des. 47, 61–82 (2016)

    Article  MathSciNet  Google Scholar 

  36. Shamanskiy, A., Simeon, B.: Isogeometric simulation of thermal expansion for twin screw compressors. IOP Conf. Ser. Mater. Sci. Eng. 425(012031) (2018)

    Article  Google Scholar 

  37. Speleers, H., Manni, C.: Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines. J. Comput. Appl. Math. 289, 68–86 (2015)

    Article  MathSciNet  Google Scholar 

  38. Utri, M., Brümmer, A.: Improvement of the efficiency of twin-screw refrigeration compressors by means of dual lead rotors. In: International Compressor Engineering Conference, Paper 1428 (2016)

    Google Scholar 

  39. Utri, M., Brümmer, A.: Energy potential of dual lead rotors for twin screw compressors. IOP Conf. Ser. Mater. Sci. Eng. 232(012018) (2017)

    Article  Google Scholar 

  40. Utri, M., Brümmer, A., Hauser, J.: Comparison of thermodynamic efficiency between constant, dual and multiple lead rotors for an industrial air screw compressor. IOP Conf. Ser. Mater. Sci. Eng. 425(012025) (2018)

    Article  Google Scholar 

  41. Utri, M., Höckenkamp, S., Brümmer, A.: Fluid flow through male rotor housing clearances of dry running screw machines using dimensionless numbers. IOP Conf. Ser. Mater. Sci. Eng. 425(012033) (2018)

    Article  Google Scholar 

  42. Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature based squared distance minimization. ACM Trans. Graph. 25, 214–238 (2006)

    Article  Google Scholar 

  43. Wang, W., Zhang, Y., Liu, L., Hughes, T.J.R.: Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology. Comput. Aided Des. 45, 351–360 (2013)

    Article  MathSciNet  Google Scholar 

  44. Wang, X., Qian, X.: An optimization approach for constructing trivariate \({B}\)-spline solids. Comput. Aided Des. 46, 179–191 (2014)

    Article  MathSciNet  Google Scholar 

  45. Xia, S., Qian, X.: Generating high-quality high-order parameterization for isogeometric analysis on triangulations. Comput. Methods Appl. Mech. Eng. 338, 1–26 (2018)

    Article  MathSciNet  Google Scholar 

  46. Xiao, S., Kang, H., Fu, X.M., Chen, F.: Computing IGA-suitable planar parameterizations by PolySquare-enhanced domain partition. Comput. Aided Geom. Design 62, 29–43 (2018)

    Article  MathSciNet  Google Scholar 

  47. Xu, G., Li, M., Mourrain, B., Rabzuck, T., Xu, J., Bordas, S.P.A.: Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization. Comput. Methods Appl. Mech. Eng. 328, 175–200 (2018)

    Article  MathSciNet  Google Scholar 

  48. Xu, G., Mourrain, B., Galligo, A., Rabczuk, T.: High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods. Comput. Mech. 54, 1303–1313 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 678727 (the MOTOR project), as well as by the ERC advanced grant CHANGE (GA no. 694515) and by the Austrian Science Fund (FWF NFN S117). We are grateful to our project partners from Dortmund for providing the data for the industrial example.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Jüttler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sajavičius, S., Jüttler, B., Špeh, J. (2019). Template Mapping Using Adaptive Splines and Optimization of the Parameterization. In: Giannelli, C., Speleers, H. (eds) Advanced Methods for Geometric Modeling and Numerical Simulation. Springer INdAM Series, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-27331-6_9

Download citation

Publish with us

Policies and ethics