Skip to main content

Deep Neural Trading: Comparative Study with Feed Forward, Recurrent and Autoencoder Networks

  • Conference paper
  • First Online:
Data Management Technologies and Applications (DATA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 862))

  • 426 Accesses

Abstract

Algorithmic trading approaches based on news or social network posts claim to outperform classical methods that use only price time series and other economics values. However combining financial time series with news or posts, requires daily huge amount of relevant text which are impracticable to gather in real time, even because the online sources of news and social networks no longer allow unconditional massive download of data. These difficulties have renewed the interest in simpler methods based on financial time series. This work presents a wide experimental comparisons of the performance of 7 trading protocols applied to 27 component stocks of the Dow Jones Industrial Average (DJIA). The buy/sell trading actions are driven by the stock value predictions performed with 3 types of neural network architectures: feed forward, recurrent and autoencoder. Each architecture types in turn has been experimented with different sizes and hyperparameters over all the multivariate time series. The combinations of trading protocols with variants of the 3 neural network types have been in turn applied to time series, varying the input variables from 4 to 17 and the training period from 8 to 16 years while the test period from 1 to 2 years.

This work was partially supported by the project “Toreador”, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 688797. We thank NVIDIA Corporation for the donated Titan GPU used in this work.

G. Domeniconi—Contribution done during the affiliation at the University of Bologna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, M., Nakayama, H.: Deep learning for forecasting stock returns in the cross-section. arXiv preprint arXiv:1801.01777 (2018)

  2. Adebiyi, A.A., Adewumi, A.O., Ayo, C.K.: Comparison of ARIMA and artificial neural networks models for stock price prediction. J. Appl. Math. 2014, 614342:1–614342:7 (2014). https://doi.org/10.1155/2014/614342

    Article  MathSciNet  Google Scholar 

  3. Akita, R., Yoshihara, A., Matsubara, T., Uehara, K.: Deep learning for stock prediction using numerical and textual information. In: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pp. 1–6. IEEE (2016)

    Google Scholar 

  4. Atsalakis, G.S., Valavanis, K.P.: Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Syst. Appl. 36(7), 10696–10707 (2009)

    Article  Google Scholar 

  5. Atsalakis, G.S., Valavanis, K.P.: Surveying stock market forecasting techniques-Part II: soft computing methods. Expert Syst. Appl. 36(3), 5932–5941 (2009)

    Article  Google Scholar 

  6. Bao, W., Yue, J., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLOS One 12(7), 1–24 (2017). https://doi.org/10.1371/journal.pone.0180944

    Article  Google Scholar 

  7. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    Article  Google Scholar 

  8. Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day, Inc., San Francisco (1970)

    MATH  Google Scholar 

  9. Cao, Q., Leggio, K.B., Schniederjans, M.J.: A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market. Comput. Oper. Res. 32(10), 2499–2512 (2005)

    Article  Google Scholar 

  10. Cerroni, W., Moro, G., Pasolini, R., Ramilli, M.: Decentralized detection of network attacks through P2P data clustering of SNMP data. Comput. Secur. 52, 1–16 (2015). https://doi.org/10.1016/j.cose.2015.03.006

    Article  Google Scholar 

  11. Cerroni, W., Moro, G., Pirini, T., Ramilli, M.: Peer-to-peer data mining classifiers for decentralized detection of network attacks. In: Wang, H., Zhang, R. (eds.) Proceedings of the 24th Australasian Database Conference, ADC 2013. CRPIT, vol. 137, pp. 101–108. Australian Computer Society, Inc., Darlinghurst (2013). http://crpit.com/abstracts/CRPITV137Cerroni.html

  12. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), October 2014, pp. 1724–1734. Association for Computational Linguistics, Doha (2014). http://www.aclweb.org/anthology/D14-1179

  13. Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction. In: IJCAI, pp. 2327–2333 (2015)

    Google Scholar 

  14. Domeniconi, G., Masseroli, M., Moro, G., Pinoli, P.: Discovering new gene functionalities from random perturbations of known gene ontological annotations. In: KDIR 2014 - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, Rome, Italy, 21–24 October 2014, pp. 107–116. SciTePress (2014). https://doi.org/10.5220/0005087801070116

  15. Domeniconi, G., Masseroli, M., Moro, G., Pinoli, P.: Cross-organism learning method to discover new gene functionalities. Comput. Methods Programs Biomed. 126, 20–34 (2016). https://doi.org/10.1016/j.cmpb.2015.12.002

    Article  Google Scholar 

  16. Domeniconi, G., Moro, G., Pagliarani, A., Pasolini, R.: Cross-domain sentiment classification via polarity-driven state transitions in a Markov model. In: Fred, A., Dietz, J.L.G., Aveiro, D., Liu, K., Filipe, J. (eds.) IC3K 2015. CCIS, vol. 631, pp. 118–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-52758-1_8

    Chapter  Google Scholar 

  17. Domeniconi, G., Moro, G., Pagliarani, A., Pasolini, R.: Markov chain based method for in-domain and cross-domain sentiment classification. In: KDIR 2015 - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, part of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015), Lisbon, Portugal, vol. 1, pp. 127–137. SciTePress (2015). https://doi.org/10.5220/0005636001270137

  18. Domeniconi, G., Moro, G., Pagliarani, A., Pasolini, R.: Learning to predict the stock market Dow Jones index detecting and mining relevant tweets. In: Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Funchal, Madeira, Portugal, 1–3 November 2017, vol. 1, pp. 165–172. SciTePress (2017). https://doi.org/10.5220/0006488201650172

  19. Domeniconi, G., Moro, G., Pagliarani, A., Pasolini, R.: On deep learning in cross-domain sentiment classification. In: Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Funchal, Madeira, Portugal, 1–3 November 2017, vol. 1, pp. 50–60 (2017). https://doi.org/10.5220/0006488100500060

  20. Domeniconi, G., Moro, G., Pasolini, R., Sartori, C.: Cross-domain text classification through iterative refining of target categories representations. In: KDIR 2014 - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, Rome, Italy, 21–24 October 2014, pp. 31–42. SciTePress (2014). https://doi.org/10.5220/0005069400310042

  21. Domeniconi, G., Moro, G., Pasolini, R., Sartori, C.: Iterative refining of category profiles for nearest centroid cross-domain text classification. In: Fred, A., Dietz, J.L.G., Aveiro, D., Liu, K., Filipe, J. (eds.) IC3K 2014. CCIS, vol. 553, pp. 50–67. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25840-9_4

    Chapter  Google Scholar 

  22. Domeniconi, G., Moro, G., Pasolini, R., Sartori, C.: A comparison of term weighting schemes for text classification and sentiment analysis with a supervised variant of tf.idf. In: Helfert, M., Holzinger, A., Belo, O., Francalanci, C. (eds.) DATA 2015. CCIS, vol. 584, pp. 39–58. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30162-4_4

    Chapter  Google Scholar 

  23. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  24. Fabbri, M., Moro, G.: Dow Jones trading with deep learning: the unreasonable effectiveness of recurrent neural networks. In: Proceedings of the 7th International Conference on Data Science, Technology and Applications - Volume 1: DATA, pp. 142–153. INSTICC, SciTePress (2018). https://doi.org/10.5220/0006922101420153

  25. Fama, E.F.: Efficient capital markets: a review of theory and empirical work. J. Financ. 25(2), 383–417 (1970)

    Article  Google Scholar 

  26. Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270, 654–669 (2017)

    Article  MathSciNet  Google Scholar 

  27. Fisher, I.E., Garnsey, M.R., Hughes, M.E.: Natural language processing in accounting, auditing and finance: a synthesis of the literature with a roadmap for future research. Intell. Syst. Account. Financ. Manag. 23(3), 157–214 (2016)

    Article  Google Scholar 

  28. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12, 2451–2471 (1999)

    Article  Google Scholar 

  29. Gidofalvi, G., Elkan, C.: Using news articles to predict stock price movements. Department of Computer Science and Engineering, University of California, San Diego (2001)

    Google Scholar 

  30. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  32. Khashei, M., Bijari, M., Ardali, G.A.R.: Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 72(4–6), 956–967 (2009)

    Article  Google Scholar 

  33. Khashei, M., Bijari, M., Ardali, G.A.R.: Hybridization of autoregressive integrated moving average (ARIMA) with probabilistic neural networks (PNNs). Comput. Ind. Eng. 63(1), 37–45 (2012)

    Article  Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., USA (2012). http://dl.acm.org/citation.cfm?id=2999134.2999257

  36. LeBaron, B., Arthur, W.B., Palmer, R.: Time series properties of an artificial stock market. J. Econ. Dyn. Control. 23(9–10), 1487–1516 (1999)

    Article  Google Scholar 

  37. Lee, C.M., Ko, C.N.: Short-term load forecasting using lifting scheme and ARIMA models. Expert Syst. Appl. 38(5), 5902–5911 (2011)

    Article  Google Scholar 

  38. di Lena, P., Domeniconi, G., Margara, L., Moro, G.: GOTA: GO term annotation of biomedical literature. BMC Bioinform. 16, 346:1–346:13 (2015). https://doi.org/10.1186/s12859-015-0777-8

    Article  Google Scholar 

  39. Lin, M.C., Lee, A.J., Kao, R.T., Chen, K.T.: Stock price movement prediction using representative prototypes of financial reports. ACM Trans. Manag. Inf. Syst. (TMIS) 2(3), 19 (2011)

    Google Scholar 

  40. Lo, A.W., MacKinlay, A.C.: Stock market prices do not follow random walks: evidence from a simple specification test. Rev. Financ. Stud. 1(1), 41–66 (1988). https://doi.org/10.1093/rfs/1.1.41

    Article  Google Scholar 

  41. Lo, A.W., Repin, D.V.: The psychophysiology of real-time financial risk processing. J. Cogn. Neurosci. 14(3), 323–339 (2002)

    Article  Google Scholar 

  42. Lodi, S., Monti, G., Moro, G., Sartori, C.: Peer-to-peer data clustering in self-organizing sensor networks. In: Intelligent Techniques for Warehousing and Mining Sensor Network Data, December 2009, pp. 179–211. IGI Global, Information Science Reference, Hershey (2009). http://www.igi-global.com/chapter/peer-peer-data-clustering-self/39546

  43. Malkiel, B.G.: The efficient market hypothesis and its critics. J. Econ. Perspect. 17(1), 59–82 (2003)

    Article  Google Scholar 

  44. Malkiel, B.G.: A Random Walk Down Wall Street. Norton, New York (1973)

    Google Scholar 

  45. Merh, N., Saxena, V.P., Pardasani, K.R.: A comparison between hybrid approaches of ann and arima for indian stock trend forecasting. Bus. Intell. J. 3(2), 23–43 (2010)

    Google Scholar 

  46. Mitra, S.K.: Optimal combination of trading rules using neural networks. Int. Bus. Res. 2(1), 86 (2009)

    Article  Google Scholar 

  47. Monti, G., Moro, G.: Self-organization and local learning methods for improving the applicability and efficiency of data-centric sensor networks. In: Bartolini, N., Nikoletseas, S., Sinha, P., Cardellini, V., Mahanti, A. (eds.) QShine 2009. LNICSSITE, vol. 22, pp. 627–643. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10625-5_40

    Chapter  Google Scholar 

  48. Moro, G., Pagliarani, A., Pasolini, R., Sartori, C.: Cross-domain & in-domain sentiment analysis with memory-based deep neural networks. In: Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, pp. 127–138. INSTICC, SciTePress (2018). https://doi.org/10.5220/0007239101270138

  49. Moro, G., Pasolini, R., Domeniconi, G., Pagliarani, A., Roli, A.: Prediction and trading of Dow Jones from Twitter: a boosting text mining method with relevant tweets identification. In: Fred, A., Aveiro, D., Dietz, J.L.G., Liu, K., Bernardino, J., Salgado, A., Filipe, J. (eds.) IC3K 2017. CCIS, vol. 976, pp. 26–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15640-4_2

    Chapter  Google Scholar 

  50. Mostafa, M.M.: Forecasting stock exchange movements using neural networks: empirical evidence from Kuwait. Expert Syst. Appl. 37(9), 6302–6309 (2010)

    Article  Google Scholar 

  51. Olson, D., Mossman, C.: Neural network forecasts of Canadian stock returns using accounting ratios. Int. J. Forecast. 19(3), 453–465 (2003)

    Article  Google Scholar 

  52. Pagliarani, A., Moro, G., Pasolini, R., Domeniconi, G.: Transfer learning in sentiment classification with deep neural networks. In: Fred, A., Aveiro, D., Dietz, J.L.G., Liu, K., Bernardino, J., Salgado, A., Filipe, J. (eds.) IC3K 2017. CCIS, vol. 976, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15640-4_1

    Chapter  Google Scholar 

  53. Schumaker, R., Chen, H.: Textual analysis of stock market prediction using financial news articles. In: AMCIS 2006 Proceedings, p. 185 (2006)

    Google Scholar 

  54. Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using breaking financial news: the AZFin text system. ACM Trans. Inf. Syst. (TOIS) 27(2), 12 (2009)

    Article  Google Scholar 

  55. Soni, S.: Applications of ANNs in stock market prediction: a survey. Int. J. Comput. Sci. Eng. Technol. 2(3), 71–83 (2011)

    Google Scholar 

  56. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. CoRR abs/1502.04681 (2015). http://arxiv.org/abs/1502.04681

  57. Sterba, J., Hilovska, K.: The implementation of hybrid ARIMA neural network prediction model for aggregate water consumption prediction. Aplimat J. Appl. Math. 3(3), 123–131 (2010)

    Google Scholar 

  58. Tetlock, P.C.: Giving content to investor sentiment: the role of media in the stock market. J. Financ. 62(3), 1139–1168 (2007)

    Article  Google Scholar 

  59. Wang, W., Li, Y., Huang, Y., Liu, H., Zhang, T.: A method for identifying the mood states of social network users based on cyber psychometrics. Future Internet 9(2), 22 (2017)

    Article  Google Scholar 

  60. Wikipedia Contributors: Financial statement – Wikipedia, the free encyclopedia (2018). https://en.wikipedia.org/w/index.php?title=Financial_statement&oldid=831492885. Accessed 21 Feb 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Moro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moro, G., Pasolini, R., Domeniconi, G., Ghini, V. (2019). Deep Neural Trading: Comparative Study with Feed Forward, Recurrent and Autoencoder Networks. In: Quix, C., Bernardino, J. (eds) Data Management Technologies and Applications. DATA 2018. Communications in Computer and Information Science, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-26636-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26636-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26635-6

  • Online ISBN: 978-3-030-26636-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics