Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 260))

  • 516 Accesses

Abstract

This chapter derives the relations between Eulerian and Lagrangian descriptions of displacement and velocity fields, relations between the time derivatives of system properties, variations, and introduces Jourdain’s variational principle. Jourdain’s principle is then applied to viscous incompressible fluids, and the derivation of the energy rate equation. These equations will be utilized in the subsequent chapter for the derivation of the flow-oscillator model for vortex-induced vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baruh H (1999) Analytical dynamics. WCB/McGraw-Hill, Boston

    Google Scholar 

  2. Bateman H (1931) On dissipative systems and related variational principles. Phys Rev 38:815–819

    Article  Google Scholar 

  3. Cengel YA, Cimbala JM (2006) Fluid mechanics: fundamentals and applications. McGraw-Hill series in mechanical engineering. McGraw-Hill, New York City

    Google Scholar 

  4. Dill EH (2006) Continuum mechanics: elasticity, plasticity, viscoelasticity. CRC Press, Boca Raton

    Google Scholar 

  5. Gelfand IM, Fomin SV (1963) Calculus of variations. Prentice-Hall Inc, Englewood Cliffs

    MATH  Google Scholar 

  6. Goldstein H, Poole C, Safko J (2002) Classical mechanics, 3rd edn. Addison-Wesley, Boston

    MATH  Google Scholar 

  7. Jourdain PEB (1909) Note on an analogue of gauss principle of least constraint. Q J Pure Appl Math 40:153–157

    MATH  Google Scholar 

  8. Kövecses J, Cleghorn WL (2003) Finite and impulsive motion of constrained mechanical systems via Jourdain’s principle: discrete and hybrid parameter models. Int J Non-Linear Mech 38(6):935–956

    Article  Google Scholar 

  9. Kundu PK, Cohen IM (2008) Fluid mechanics, 4th edn. Elsevier Inc., Oxford

    Google Scholar 

  10. Lamb H (1963) Hydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  11. Lanczos C (1970) The variational principles of mechanics, 4th edn. Courier Dover Publications, Mineola

    MATH  Google Scholar 

  12. Leech CM (1977) Hamilton’s principle applied to fluid mechanics. Q J Mech Appl Math 30:107–130

    Article  MathSciNet  Google Scholar 

  13. McIver DB (1973) Hamilton’s principle for systems of changing mass. J Eng Mech 7(3):249–261

    MATH  Google Scholar 

  14. Millikan CB (1929) On the steady motion of viscous, incompressible fluids; with particular reference to a variation principle. Philos Mag Ser 7, 7(44):641–662

    Google Scholar 

  15. Moon FC (1998) Applied dynamics: with applications to multibody and mechatronic systems. Wiley, New York

    Google Scholar 

  16. Mottaghi S (2018) Modeling vortex-induced fluid-structure interaction using an extension of Jourdain’s principle. PhD dissertation, Rutgers, the State University of New Jersey, New Brunswick

    Google Scholar 

  17. Mottaghi S, Benaroya H (2016) Reduced-order modeling of fluid-structure interaction and vortex-induced vibration systems using an extension of Jourdain’s principle. J Sound Vib 382(1):193–212

    Article  Google Scholar 

  18. Papastavridis JG (1992) On Jourdain’s principle. Int J Eng Sci 30(2):135–140

    Article  MathSciNet  Google Scholar 

  19. Price JF (2006) Lagrangian and Eulerian representations of fluid flow: kinematics and the equations of motion. Woods Hole Technical Report

    Google Scholar 

  20. Riewe F (1997) Mechanics with fractional derivatives. Phys Rev E 55:3581–3592

    Article  MathSciNet  Google Scholar 

  21. Stokes GG (1847) On the theory of oscillatory waves. Trans Camb Philos Soc 8:441–455

    Google Scholar 

  22. Vujanovic B, Atanackovic T (1978) On the use of Jourdain’s variational principle in nonlinear mechanics and transport phenomena. Acta Mech 29:229–238

    Article  Google Scholar 

  23. Wang L-S, Pao Y-H (2003) Jourdain’s variational equation and Appell’s equation of motion for nonholonomic dynamical systems. Am J Phys 71(1):72–82

    Article  Google Scholar 

  24. Xing JT, Price WG (2000) The theory of non-linear elastic ship-water interaction dynamics. J Sound Vib 230(4):877–914

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrob Mottaghi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mottaghi, S., Gabbai, R., Benaroya, H. (2020). Eulerian and Lagrangian Descriptions. In: An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations. Solid Mechanics and Its Applications, vol 260. Springer, Cham. https://doi.org/10.1007/978-3-030-26133-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26133-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26131-3

  • Online ISBN: 978-3-030-26133-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics