Skip to main content

Mathematical Models of Vitreous Humour Dynamics and Retinal Detachment

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

The vitreous humour is a gel-like substance, which fills the vitreous chamber at the posterior part of the eye. It is a clear transparent material that can be mechanically characterised as a visco-elastic fluid. The vitreous has the important role of holding the retina in contact with the retinal pigment epithelium. During vitreous motion vitreoretinal tractions are generated and this might potentially lead to retinal detachment (RD). Studying the vitreous mechanical behaviour is thus relevant for understanding the physiology and pathophysiology of the eye.

Mathematical modelling has provided significant contributions into understanding vitreous dynamics and the role it has on the occurence of vitreoretinal pathologies. In this chapter we first discuss works addressing vitreous motion induced by eye rotations and the possible generation of large mechanical stresses on the retina. Secondly we discuss models associated with RD, focusing on the progression of rhegmatogenous RD and the formation of exudative RD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Abouali, A. Modareszadeh, A. Ghaffariyeh, and J. Tu. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Medical Engineering & Physics, 34 (6): 681–692, July 2012. ISSN 1350-4533. http://dx.doi.org/10.1016/j.medengphy.2011.09.011.

    Article  Google Scholar 

  2. G. S. Ang, J. Townend, and N. Lois. Epidemiology of giant retinal tears in the united kingdom: the british giant retinal tear epidemiology eye study (bgees). Investigative Ophthalmology & Visual science, 51 (9): 4781–4787, 2010.

    Article  Google Scholar 

  3. W. Becker. Metrics. In R. Wurtz and M. Goldberg, editors, The neurobiology of saccadic eye movements. Elsevier Science Publisher BV (Biomedical Division), 1989.

    Google Scholar 

  4. A. Bonfiglio, A. Lagazzo, R. Repetto, and A. Stocchino. An experimental model of vitreous motion induced by eye rotations. Eye and Vision, 2 (1): 10, 2015.

    Google Scholar 

  5. W. J. Bottega, P. L. Bishay, J. L. Prenner, and H. F. Fine. On the mechanics of a detaching retina. Math. Med. Biol., 30: 287–310, 2013. http://dx.doi.org/10.1093/imammb/dqs024.

    Article  MATH  Google Scholar 

  6. D. A. Brinton and C. P. Wilkinson. Retinal Detachment: Priniciples and Practice, volume 1. Oxford University Press, 2009.

    Google Scholar 

  7. T. Chou and M. Siegel. A mechanical model of retinal detachment. Physical Biology, 9 (4): 046001, 2012.

    Article  Google Scholar 

  8. J. Colter, A. Williams, P. Moran, and B. Coats. Age-related changes in dynamic moduli of ovine vitreous. Journal of the Mechanical Behavior of Biomedical Materials, 41: 315–324, 2015.

    Article  Google Scholar 

  9. P. D. Dalton, T. V. Chirila, Y. Hong, and A. Jefferson. Oscillatory shear experiments as criteria for potential vitreous substitutes. Polymer Gels and Networks, 3 (4): 429–444, 1995. ISSN 0966-7822. http://dx.doi.org/10.1016/0966-7822(94)00011-5.

    Article  Google Scholar 

  10. T. David, S. Smye, T. Dabbs, and T. James. A model for the fluid motion of vitreous humour of the human eye during saccadic movement. Phys. Med. Biol., 43: 1385–1399, 1998.

    Article  Google Scholar 

  11. M. Dogramaci and T. H. Williamson. Dynamics of epiretinal membrane removal off the retinal surface: a computer simulation project. British Journal of Ophthalmology, 97 (9): 1202–1207, 2013.

    Article  Google Scholar 

  12. M. Dvoriashyna, A. J. Foss, E. A. Gaffney, O. E. Jensen, and R. Repetto. Osmotic and electroosmotic fluid transport across the retinal pigment epithelium: A mathematical model. Journal of Theoretical Biology, 456: 233–248, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Dyson, A. J. Fitt, O. E. Jensen, N. Mottram, D. Miroshnychenko, S. Naire, R. Ocone, J. H. Siggers, and A. Smithbecker. Post re-attachment retinal re-detachment. In Proceedings of the Fourth Medical Study Group, University of Strathclyde, Glasgow, 2004.

    Google Scholar 

  14. B. A. Filas, Q. Zhang, R. J. Okamoto, Y.-B. Shui, and D. C. Beebe. Enzymatic degradation identifies components responsible for the structural properties of the vitreous body. Investigative Ophthalmology & Visual Science, 55 (1): 55–63, 2014.

    Article  Google Scholar 

  15. W. J. Foster. Bilateral patching in retinal detachment: fluid mechanics and retinal settling. Investigative Ophthalmology & Visual Science, 52 (8): 5437–5440, 2011.

    Article  Google Scholar 

  16. W. J. Foster and T. Chou. Physical mechanisms of gas and perfluoron retinopexy and sub-retinal fluid displacement. Physics in Medicine & Biology, 49 (13): 2989, 2004.

    Article  Google Scholar 

  17. W. J. Foster, N. Dowla, S. Y. Joshi, and M. Nikolaou. The fluid mechanics of scleral buckling surgery for the repair of retinal detachment. Graefe’s Archive for Clinical and Experimental Ophthalmology, 248 (1): 31, 2010.

    Article  Google Scholar 

  18. W. S. Foulds. Role of vitreous in the pathogenesis of retinal detachment. In S. J., editor, Vitreous in Health and Disease, pages 375–393. Springer-Verlag, 2014.

    Google Scholar 

  19. O. P. Garcia, P. R. M. Lyra, A. Fernandes, and R. d. C. F. de Lima. The influence of the vitreous humor viscosity during laser-induced thermal damage in choroidal melanomas. International Journal of Thermal Sciences, 136: 444–456, 2019.

    Article  Google Scholar 

  20. M. Kita and M. Marmor. Retinal adhesive force in living rabbit, cat, and monkey eyes. normative data and enhancement by mannitol and acetazolamide. Invest. Ophthalmol. Vis. Sci., 33 (6): 1879–1882, May 1992.

    Google Scholar 

  21. J. M. Lakawicz, W. J. Bottega, J. L. Prenner, and H. F. Fine. An analysis of the mechanical behaviour of a detached retina. Math. Med. Biol., 32: 137–161, 2015. http://dx.doi.org/10.1093/imammb/dqt023.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. M. Le Goff and P. N. Bishop. Adult vitreous structure and postnatal changes. Eye (London, England), 22 (10): 1214–1222, Oct. 2008. ISSN 1476-5454. http://dx.doi.org/10.1038/eye.2008.21. PMID: 18309340.

    Article  Google Scholar 

  23. B. Lee, M. Litt, and G. Buchsbaum. Rheology of the vitreous body. Part I: viscoelasticity of human vitreous. Biorheology, 29: 521–533, 1992.

    Article  Google Scholar 

  24. B. Lee, M. Litt, and G. Buchsbaum. Rheology of the vitreous body: Part 2. viscoelasticity of bovine and porcine vitreous. Biorheology, 31 (4): 327–338, Aug. 1994. ISSN 0006-355X. PMID: 7981433.

    Article  Google Scholar 

  25. J. Meskauskas, R. Repetto, and J. H. Siggers. Oscillatory motion of a viscoelastic fluid within a spherical cavity. Journal of Fluid Mechanics, 685: 1–22, 2011. http://dx.doi.org/10.1017/jfm.2011.263.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Meskauskas, R. Repetto, and J. H. Siggers. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: Is mechanical stress during eye rotations a factor? Investigative Ophthalmology & Visual Science, 53 (10): 6271–6281, Oct. 2012. ISSN 1552-5783. http://dx.doi.org/10.1167/iovs.11-9390. PMID: 22899755.

    Google Scholar 

  27. D. Mitry, J. Chalmers, K. Anderson, L. Williams, B. W. Fleck, A. Wright, and H. Campbell. Temporal trends in retinal detachment incidence in scotland between 1987 and 2006. Br. J. Ophthalmol., 95 (3): 365–369, 2009.

    Article  Google Scholar 

  28. A. Modarreszadeh and O. Abouali. Numerical simulation for unsteady motions of the human vitreous humor as a viscoelastic substance in linear and non-linear regimes. Journal of Non-Newtonian Fluid Mechanics, 204: 22–31, 2014.

    Article  Google Scholar 

  29. D. Natali, R. Repetto, J. H. Tweedy, T. H. Williamson, and J. O. Pralits. A simple mathematical model of rhegmatogenous retinal detachment. Journal of Fluids and Structures, 82: 245–257, 2018. https://doi.org/10.1016/j.jfluidstructs.2018.06.020

    Article  Google Scholar 

  30. D. Natali, R. Repetto, J. H. Tweedy, T. H. Williamson, and J. O. Pralits. A simple mathematical model of rhegmatogenous retinal detachment. Journal of Fluids and Structures, 82: 245–257, 2018.

    Article  Google Scholar 

  31. C. S. Nickerson, J. Park, J. A. Kornfield, and H. Karageozian. Rheological properties of the vitreous and the role of hyaluronic acid. Journal of Biomechanics, 41 (9): 1840–1846, 2008.

    Google Scholar 

  32. J. Oldroyd. On the formulation of rheological equations of state. Proc. R. Soc. Lond. A, 200 (1063): 523–541, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Piccirelli, O. Bergamin, K. Landau, P. Boesiger, and R. Luechinger. Vitreous deformation during eye movement. NMR in Biomedicine, 25 (1): 59–66, 2012.

    Article  Google Scholar 

  34. R. Repetto. An analytical model of the dynamics of the liquefied vitreous induced by saccadic eye movements. Meccanica, 41: 101–117, 2006. http://dx.doi.org/10.1007/s11012-005-0782-5.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Repetto and J. H. Siggers. Biomechanics of the vitreous humor. In C. J. Roberts, W. J. Dupps Jr., and J. C. Downs, editors, Biomechanics of the eye. Kugler Publications, 2018.

    Google Scholar 

  36. R. Repetto, I. Ghigo, G. Seminara, and C. Ciurlo. A simple hydro-elastic model of the dynamics of a vitreous membrane. J. Fluid Mech., 503: 1–14, 2004. http://dx.doi.org/10.1017/S0022112003007389.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Repetto, A. Stocchino, and C. Cafferata. Experimental investigation of vitreous humour motion within a human eye model. Phys. Med. Biol., 50: 4729–4743, 2005. http://dx.doi.org/10.1088/0031-9155/50/19/021.

    Article  Google Scholar 

  38. R. Repetto, J. H. Siggers, and A. Stocchino. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomechanics and Modeling in Mechanobiology, 9 (1): 65–76, 2010. ISSN 1617-7959. http://dx.doi.org/10.1007/s10237-009-0159-0.

    Article  Google Scholar 

  39. R. Repetto, A. Tatone, A. Testa, and E. Colangeli. Traction on the retina induced by saccadic eye movements in the presence of posterior vitreous detachment. Biomechanics and Modeling in Mechanobiology, 10: 191–202, 2010b. http://dx.doi.org/10.1007/s10237-010-0226-6.

    Article  Google Scholar 

  40. R. Repetto, J. H. Siggers, and J. Meskauskas. Steady streaming of a viscoelastic fluid within a periodically rotating sphere. Journal of Fluid Mechanics, 761: 329–347, 2014. http://dx.doi.org/10.1017/jfm.2014.546.

    Article  MathSciNet  Google Scholar 

  41. R. Repetto, J. H. Siggers, and J. Meskauskas. Fluid mechanics of the vitreous chamber. In P. Causin, G. Guidoboni, R. Sacco, and A. Harris, editors, Integrated multidisciplinary approaches in the study and care of the human eye. Kugler Publications, 2014.

    Google Scholar 

  42. N. Riley. Steady streaming. Ann. Rev. Fluid Mech., 33: 43–65, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Rossi, G. Querzoli, G. Pasqualitto, M. Iossa, L. Placentino, R. Repetto, A. Stocchino, and G. Ripandelli. Ultrasound imaging velocimetry of the human vitreous. Experimental eye Research, 99 (1): 98–104, June 2012. ISSN 1096-0007. http://dx.doi.org/10.1016/j.exer.2012.03.014. PMID: 22516112.

    Article  Google Scholar 

  44. T. Rossi, M. G. Badas, G. Querzoli, C. Trillo, S. Telani, L. Landi, R. Gattegna, and G. Ripandelli. Does the bursa pre-macularis protect the fovea from shear stress? A possible mechanical role. Experimental Eye Research, 175:159–165 2018.

    Article  Google Scholar 

  45. J. Sebag. The vitreous: Structure, Function and Pathobiology. Springer and Verlag, 1989.

    Book  Google Scholar 

  46. J. Sebag. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefe’s Archive for Clinical and Experimental Ophthalmology, 242 (8): 690–698, Aug. 2004. ISSN 0721-832X, 1435-702X. http://dx.doi.org/10.1007/s00417-004-0980-1.

    Article  Google Scholar 

  47. J. Sebag. Seeing the invisible: the challenge of imaging vitreous. Journal of Biomedical Optics, 9 (1): 38–46, 2004.

    Article  Google Scholar 

  48. S. Shafaie, V. Hutter, M. B. Brown, M. T. Cook, and D. Y. Chau. Diffusion through the ex vivo vitreal body–bovine, porcine, and ovine models are poor surrogates for the human vitreous. International Journal of Pharmaceutics, 550 (1–2): 207–215, 2018.

    Article  Google Scholar 

  49. P. Sharif-Kashani, J. Hubschman, D. Sassoon, and H. P. Kavehpourlee. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties. Journal of Biomechanics, 44 (3): 419–423, Feb. 2011. ISSN 1873-2380. http://dx.doi.org/10.1016/j.jbiomech.2010.10.002. PMID: 21040921.

    Article  Google Scholar 

  50. A. F. Silva, M. A. Alves, and M. S. Oliveira. Rheological behaviour of vitreous humour. Rheologica Acta, 56 (4): 377–386, 2017.

    Article  Google Scholar 

  51. N. Soman and R. Banerjee. Artificial vitreous replacements. Bio-Medical Materials and Engineering, 13 (1): 59–74, 2003. ISSN 0959-2989.

    Google Scholar 

  52. R. F. Spaide. Visualization of the posterior vitreous with dynamic focusing and windowed averaging swept source optical coherence tomography. American Journal of Ophthalmology, 158 (6): 1267–1274, 2014.

    Article  Google Scholar 

  53. E. Stefánsson. Physiology of vitreous surgery. Graefes Arch. Clin. Exp. Ophthalmol., 247: 147–163, 2009. http://dx.doi.org/10.1007/s00417-008-0980-7.

    Article  Google Scholar 

  54. A. Stocchino, R. Repetto, and C. Cafferata. Eye rotation induced dynamics of a newtonian fluid within the vitreous cavity: the effect of the chamber shape. Phys. Med. Biol., 52: 2021–2034, 2007. http://dx.doi.org/10.1088/0031-9155/52/7/016.

    Google Scholar 

  55. K. Swindle, P. Hamilton, and N. Ravi. In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous. Journal of Biomedical Materials Research - Part A, 87A (3): 656–665, Dec. 2008. ISSN 1549-3296.

    Article  Google Scholar 

  56. K. E. Swindle and N. Ravi. Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol., 2(2): 255–265, 2007.

    Article  Google Scholar 

  57. R. I. Tanner. Engineering Rheology. Oxford University Press, USA, 2 edition, May 2000. ISBN 0198564732.

    Google Scholar 

  58. N. K. Tram and K. E. Swindle-Reilly. Rheological properties and age-related changes of the human vitreous humor. Frontiers in Bioengineering and Biotechnology, 6:199, 2018.

    Article  Google Scholar 

  59. J. Vroon, J. de Jong, A. Aboulatta, A. Eliasy, F. van der Helm, J. van Meurs, D. Wong, and A. Elsheikh. Numerical study of the effect of head and eye movement on progression of retinal detachment. Biomechanics and Modeling in Mechanobiology, pages 1–9, 2018.

    Google Scholar 

  60. K. A. Walton, C. H. Meyer, C. J. Harkrider, T. A. Cox, and C. A. Toth. Age-related changes in vitreous mobility as measured by video b scan ultrasound. Experimental Eye Research, 74 (2): 173–80, Feb. 2002. ISSN 0014-4835. http://dx.doi.org/10.1006/exer.2001.1136. PMID: 11950227.

    Article  Google Scholar 

  61. T. H. Williamson, E. J. Lee, and M. Shunmugam. Characteristics of rhegmatogenous retinal detachment and their relationship to success rates of surgery. Retina, 34 (7): 1421–1427, 2014.

    Article  Google Scholar 

  62. E. Winkler. Die Lehre von der Elasticitaet und Festigkeit: mit besonderer RĂĽcksicht auf ihre Anwendung in der Technik fĂĽr polytechnische Schulen, Bauakademien, Ingenieue, Maschinenbauer, Architecten, etc, volume 1. Dominicus, 1867.

    Google Scholar 

  63. D. Wong, Y. Chan, T. Bek, I. Wilson, and E. Stefansson. Intraocular currents, Bernoulli’s principle and non-drainage scleral buckling for rhegmatogenous retinal detachment. Eye, 32(2):213, 2018.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Federica Grillo, University of Genoa (Italy), for drawing Fig. 5a. Mariia Dvoriashyna acknowledges the Department of Civil, Chemical and Environmental Engineering of the University of Genoa (Italy), where she worked as a PhD student when the original version of this chapter was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Repetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Repetto, R., Dvoriashyna, M. (2019). Mathematical Models of Vitreous Humour Dynamics and Retinal Detachment. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_13

Download citation

Publish with us

Policies and ethics