Skip to main content

Vitreous Physiology

  • Chapter
  • First Online:
Ocular Fluid Dynamics

Abstract

The translucency of the vitreous makes its full structure and composition challenging to completely elucidate, but what is known about the anatomy and biochemistry of this body and its impact on optic function is fundamental to understanding ocular health and disorders, as it carries out several important functions within the eye. The particular makeup of structural protein fibers is known to play a pivotal role in stabilizing the vitreous and maintaining its morphological integrity, and disruptions in this network, due to genetics, disease, or environmental changes, may result in certain conditions and ocular pathologies. Research has recently shown that the concentrations of ions, nutrients, and other proteins and small molecules in the vitreous can also be affected by disease. Age-related changes to the vitreous are predominantly due to changes in the density and increasing liquefaction, which weaken its structural integrity and adhesion to the internal limiting membrane and may result in posterior vitreous detachment or collapse of the vitreous body. Familiarity with the anatomy, biochemistry, and development of, and changes to the vitreous facilitates an increased knowledge of its role in maintaining overall ocular health and may also further the understanding of certain conditions and ocular pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages. American journal of ophthalmology. 2010;149(3):371-382.e371.

    Article  Google Scholar 

  2. Krebs I, Brannath W, Glittenberg C, Zeiler F, Sebag J, Binder S. Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration? American journal of ophthalmology. 2007;144(5):741-746.

    Article  Google Scholar 

  3. Sebag J. Age-related changes in human vitreous structure. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 1987;225(2):89-93.

    Article  Google Scholar 

  4. Itakura H, Kishi S, Kotajima N, Murakami M. Vitreous collagen metabolism before and after vitrectomy. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2005;243(10):994-998.

    Article  Google Scholar 

  5. Maumenee IH. Vitreoretinal degeneration as a sign of generalized connective tissue diseases. American journal of ophthalmology. 1979;88(3 Pt 1):432-449.

    Article  Google Scholar 

  6. Bishop PN, Reardon AJ, McLeod D, Ayad S. Identification of alternatively spliced variants of type II procollagen in vitreous. Biochemical and biophysical research communications. 1994;203(1):289-295.

    Article  Google Scholar 

  7. Bhutto IA, Kim SY, McLeod DS, et al. Localization of collagen XVIII and the endostatin portion of collagen XVIII in aged human control eyes and eyes with age-related macular degeneration. Investigative ophthalmology & visual science. 2004;45(5):1544-1552.

    Article  Google Scholar 

  8. Ohlmann AV, Ohlmann A, Welge-Lussen U, May CA. Localization of collagen XVIII and endostatin in the human eye. Current eye research. 2005;30(1):27-34.

    Article  Google Scholar 

  9. Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel. Progress in retinal and eye research. 2000;19(3):323-344.

    Article  Google Scholar 

  10. Scott JE, Chen Y, Brass A. Secondary and tertiary structures involving chondroitin and chondroitin sulphates in solution, investigated by rotary shadowing/electron microscopy and computer simulation. European journal of biochemistry. 1992;209(2):675-680.

    Article  Google Scholar 

  11. Sebag J. Diabetic vitreopathy. Ophthalmology. 1996;103(2):205-206.

    Article  Google Scholar 

  12. Kim H, Robinson SB, Csaky KG. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharmaceutical research. 2009;26(2):329-337.

    Article  Google Scholar 

  13. Reardon A, Heinegard D, McLeod D, Sheehan JK, Bishop PN. The large chondroitin sulphate proteoglycan versican in mammalian vitreous. Matrix biology: journal of the International Society for Matrix Biology. 1998;17(5):325-333.

    Article  Google Scholar 

  14. Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM. Proteomic analysis of fibrillin-rich microfibrils. Proteomics. 2006;6(1):111-122.

    Article  Google Scholar 

  15. Reardon AJ, Le Goff M, Briggs MD, et al. Identification in vitreous and molecular cloning of opticin, a novel member of the family of leucine-rich repeat proteins of the extracellular matrix. The Journal of biological chemistry. 2000;275(3):2123-2129.

    Article  Google Scholar 

  16. Hindson VJ, Gallagher JT, Halfter W, Bishop PN. Opticin binds to heparan and chondroitin sulfate proteoglycans. Investigative ophthalmology & visual science. 2005;46(12):4417-4423.

    Article  Google Scholar 

  17. Sanders EJ, Walter MA, Parker E, Aramburo C, Harvey S. Opticin binds retinal growth hormone in the embryonic vitreous. Investigative ophthalmology & visual science. 2003;44(12):5404-5409.

    Article  Google Scholar 

  18. Monfort J, Tardif G, Roughley P, et al. Identification of opticin, a member of the small leucine-rich repeat proteoglycan family, in human articular tissues: a novel target for MMP-13 in osteoarthritis. Osteoarthritis and cartilage. 2008;16(7):749-755.

    Article  Google Scholar 

  19. Wang J, McLeod D, Henson DB, Bishop PN. Age-dependent changes in the basal retinovitreous adhesion. Investigative ophthalmology & visual science. 2003;44(5):1793-1800.

    Article  Google Scholar 

  20. Matsumoto B, Blanks JC, Ryan SJ. Topographic variations in the rabbit and primate internal limiting membrane. Investigative ophthalmology & visual science. 1984;25(1):71-82.

    Google Scholar 

  21. Sebag J. Molecular biology of pharmacologic vitreolysis. Transactions of the American Ophthalmological Society. 2005;103:473-494.

    Google Scholar 

  22. Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye (London, England). 2008;22(10):1214-1222.

    Google Scholar 

  23. Andersen MV. Changes in the vitreous body pH of pigs after retinal xenon photocoagulation. Acta ophthalmologica. 1991;69(2):193-199.

    Article  MathSciNet  Google Scholar 

  24. Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body: part 3. Concentration of electrolytes, collagen and hyaluronic acid. Biorheology. 1994;31(4):339-351.

    Article  Google Scholar 

  25. Noulas AV, Skandalis SS, Feretis E, Theocharis DA, Karamanos NK. Variations in content and structure of glycosaminoglycans of the vitreous gel from different mammalian species. Biomedical chromatography: BMC. 2004;18(7):457-461.

    Article  Google Scholar 

  26. Los LI, van Luyn MJ, Nieuwenhuis P. Vascular remnants in the rabbit vitreous body. I. Morphological characteristics and relationship to vitreous embryonic development. Experimental eye research. 2000;71(2):143-151.

    Article  Google Scholar 

  27. Los LI, van Luyn MJ, Nieuwenhuis P. Organization of the rabbit vitreous body: lamellae, Cloquet's channel and a novel structure, the 'alae canalis Cloqueti'. Experimental eye research. 1999;69(3):343-350.

    Article  Google Scholar 

  28. Los LI, van Luyn MJ, Eggli PS, Dijk F, Nieuwenhuis P. Vascular remnants in the rabbit vitreous body. II. Enzyme digestion and immunohistochemical studies. Experimental eye research. 2000;71(2):153-165.

    Article  Google Scholar 

  29. Bruhn RL, Stamer WD, Herrygers LA, Levine JM, Noecker RJ. Relationship between glaucoma and selenium levels in plasma and aqueous humour. The British journal of ophthalmology. 2009;93(9):1155-1158.

    Article  Google Scholar 

  30. Esalatmanesh K, Jamshidi A, Shahram F, et al. Study of the correlation of serum selenium level with Behcet's disease. International journal of rheumatic diseases. 2011;14(4):375-378.

    Article  Google Scholar 

  31. Yilmaz A, Ayaz L, Tamer L. Selenium and pseudoexfoliation syndrome. American journal of ophthalmology. 2011;151(2):272-276.e271.

    Article  Google Scholar 

  32. Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Survey of ophthalmology. 2013;58(6):585-609.

    Article  Google Scholar 

  33. Viktorinova A, Toserova E, Krizko M, Durackova Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism: clinical and experimental. 2009;58(10):1477-1482.

    Article  Google Scholar 

  34. Simo-Servat O, Hernandez C, Simo R. Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy. Mediators of inflammation. 2012;2012:872978.

    Article  Google Scholar 

  35. Kokavec J, Min SH, Tan MH, et al. Biochemical analysis of the living human vitreous. Clinical & experimental ophthalmology. 2016;44(7):597-609.

    Article  Google Scholar 

  36. Foos RY, Wheeler NC. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology. 1982;89(12):1502-1512.

    Article  Google Scholar 

  37. Sebag J. Ageing of the vitreous. Eye (London, England). 1987;1 (Pt 2):254-262.

    Article  Google Scholar 

  38. Larsson L, Osterlin S. Posterior vitreous detachment. A combined clinical and physiochemical study. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 1985;223(2):92-95.

    Article  Google Scholar 

  39. Vaughan-Thomas A, Gilbert SJ, Duance VC. Elevated levels of proteolytic enzymes in the aging human vitreous. Investigative ophthalmology & visual science. 2000;41(11):3299-3304.

    Google Scholar 

  40. Russell SR, Shepherd JD, Hageman GS. Distribution of glycoconjugates in the human retinal internal limiting membrane. Investigative ophthalmology & visual science. 1991;32(7):1986-1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giuliari, G.P., Bracha, P., Sperry, A.B., Ciulla, T. (2019). Vitreous Physiology. In: Guidoboni, G., Harris, A., Sacco, R. (eds) Ocular Fluid Dynamics. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25886-3_10

Download citation

Publish with us

Policies and ethics