Skip to main content

Dendrochronology

  • Chapter
  • First Online:
  • 2133 Accesses

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Dendrochronology makes use of the annual pattern of tree radial growth in temperate regions. Each year trees put on a new ring under the bark whose width varies depending on various factors among which climate. Under same climatic conditions, trees of the same species growing at the same time show similar tree-ring patterns. Then there is agreement in year-to-year variation over long periods of time, making it possible to synchronize and date them. In that way, wooden samples from trees which died at an unknown date can be dated by comparison with master chronologies. Since the production of 14C in the atmosphere is not constant, radiocarbon dates are calibrated by using 14C content of tree-rings of known ages: that converts 14C age to the true calendar age. Currently, such calibration of radiocarbon dates by tree-ring chronologies is possible over the last 12,400 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnold, B. (1996). Pirogues monoxyles d’Europe centrale. Construction, typologie, évolution (Vol. 2). Coll. Archéologie aujourd’hui, Archéologie Neuchâteloise.

    Google Scholar 

  • Baillie, M. G. L., & Brown, D. M. (1988). An overview of oak chronologies. In E. A. Slates & J. O. Tate (Eds.), Science and archaeology (196, pp. 543–548), Glasgow 1987, Brit. Arch. Rep. Brit.

    Google Scholar 

  • Barbetti, M., Bird, T., Dolezal, G., Taylor, G., Francey, R. J., Cook, E., et al. (1995). Radiocarbon variations from tasmanian conifers: Results from three early Holocene logs. Radiocarbon, 37(2), 361–369.

    Article  CAS  Google Scholar 

  • Cook, E. R., Buckley, B. M., D’Arrigo, R. D., & Peterson, M. J. (2000). Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large scale sea-surface temperature anomalies. Climate Dynamics, 16, 79–91.

    Article  Google Scholar 

  • de Vries, H. (1958). Variation of the concentration of radiocarbon with time and location on Earth. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen: Proceedings Series B, 61, 267–281.

    Google Scholar 

  • Eckstein, D. (2006). Human time in tree-rings. Dendrochronologia, 24(2–3), 53–60.

    Google Scholar 

  • Eronen, M., Zetterberg, P., Briffa, K. R., Lindholm, M., Meriläinen, J., & Timonen, M. (2002). The supra-long scots pine tree-ring record for Northern Finnish Lapland. Chronology construction and initial inferences. The Holocene, 12(6), 673–680.

    Article  Google Scholar 

  • Ferguson, C. W. (1969). A 7404-year annual tree-ring chronology for bristlecone pine, pinus aristata, from the White Mountains, California. Tree-Ring Bull, 29(3–4), 1–29.

    Google Scholar 

  • Ferguson, C. W., & Graybill, D. A. (1983). Dendrochronology of bristlecone pine: A progress report. Radiocarbon, 25(2), 287–288.

    Article  Google Scholar 

  • Grudd, H., Briffa, K. R., Karlén, W., Bartholin, T. S., Jones, P. D., & Kromer, B. (2002). A 7 400-year tree-ring chronology in Northern Swedish Lapland: Natural climate variability expressed on annual to millennial time scales. The Holocene, 12(6), 657–665.

    Article  Google Scholar 

  • Kaiser, K. F., Friedrich, M., Miramont, C., Kromer, B., Sgier, M., Schaub, M., et al. (2011). Challenging process to make the late glacial tree-ring chronologies from Europe Absolute—An Inventory. Quaternary Science Reviews, 13 p. https://doi.org/10.1016/j.quascirev.2010.07.009.

  • Krapiec, M. (1998). Oak dendrochronology of the neoholocene in Poland. Folia Quaternaria, 69, 5–133.

    Google Scholar 

  • Leuschner, H.-H. (1992). Subfossil trees. In T. S. dans Bartholin, B. E. Berglund, D. Eckstein, & F. H. Schweingruber (Eds.), Tree rings and environment. Proceedings of the International Dendrochronological Symposium, Ystad, South Sweden, 3–9 September 1990 (pp. 193–197). Lund: Lund University, Department of Quaternary Geology.

    Google Scholar 

  • McCarthy, B. C. (2004). Introduction to dendrochronology, Ohio University, World Wide Web homepage. http://www.plantbio.ohiou.edu/epb/instruct/ecology/dendro.htm.

  • Naurzbaev, M. M., & Vaganov, E. A. (1999). 1957-year chronology for Eastern Taimir. Siberian Journal of Ecology, 6, 67–78.

    Google Scholar 

  • Oberlin, C., Leroy, F., & Guibal, F. (2004). High precision 14C dating of a bronze age tree-ring chronology from the pile-dwelling settlement of Montpenèdre, Hérault, Southern France. In Proceedings of the IVth Int. Symp. Radiocarbon and Archaeology, Oxford, 9–14/04/2002, Oxford University School of Archaeology Monograph (Vol. 62, pp. 193–200).

    Google Scholar 

  • Pearson, G. W. (1986). Precise calendrical dating of known growth-period samples using a ‘curve fitting’ technique. Radiocarbon, 28(2A), 292–299.

    Article  CAS  Google Scholar 

  • Pilcher, J. R., Baillie, M. G. L., Schmid, B., & Becker, B. (1984). A 7,272-year tree-ring chronology for Western Europe. Nature, 312, 150–152.

    Article  Google Scholar 

  • Rashit, M., Hantemirov, M., & Shiyatov, S. G. (2002). A continuous multimillenial ring-width chronology in Yamal, Northwestern Siberia. The Holocene, 12(6), 717–726.

    Article  Google Scholar 

  • Robinson, W. J. (1976). Tree-ring dating and archaeology in the American South-West. Tree-Ring Bull, 36, 9–20.

    Google Scholar 

  • Roig, F., Jr., Roig, C., Rabassa, J., & Boninsegna, J. (1996). Fuegan floating tree-ring chronology from subfossil Nothofagus Wood. The Holocene, 6(4), 469–476.

    Article  Google Scholar 

  • Schaub, M., Kaiser, K. F., Frank, D. C., Buentgen, U., Kromer, B., & Talamo, T. (2008). Environmental change during the Allerød and Younger Dryas reconstructed from tree-ring data. Boreas, 37, 74–86.

    Article  Google Scholar 

  • Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., et al. (1998). IntCal98 Radiocarbon Age Calibration, 24,000-0 cal BP. Radiocarbon, 40(3), 1041–1083.

    Google Scholar 

  • Suess, H. E. (1965). Secular variations in the cosmic ray produced carbon-14 in the atmosphere and their interpretation. Journal of Geophysical Research, 70, 5937–5952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Guibal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guibal, F., Guiot, J. (2021). Dendrochronology. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_8

Download citation

Publish with us

Policies and ethics