Skip to main content

Climate Evolution on the Geological Timescale and the Role of Paleogeographic Changes

  • Chapter
  • First Online:
Paleoclimatology

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Throughout geological time, major climate changes have marked the history of the Earth (Fig. 1.1). Although paleoclimate markers provide us with the broad outlines of these changes, their causes could be manifold as feedback mechanisms occur between the different compartments of the climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakrabarty, P., & Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences, 112, 6110–6115.

    Article  CAS  Google Scholar 

  • Bahr, A., Kolber, G., Kaboth-Bahr, S., Reinhardt, L., Friedrich, O., Pross, J. (2020). Mega-monsoon variability during the late Triassic: Re-assessing the role of orbital forcing in the deposition of playa sediments in the Germanic Basin. Sedimentology, 67, 951–970. https://doi.org/10.1111/sed.12668.

  • Berner, R. A. (2001). GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301(2), 182–204. https://doi.org/10.2475/ajs.301.2.182.

  • Biggin, A. J., de Wit, M. J., Langereis, C. G., Zegers, T. E.,Voûte, S., Dekkers, M. J., & Drost, K. (2011). Palaeomagnetism of Archaean rocks of the Onverwacht Group, Barberton Greenstone Belt (southern Africa): Evidence for a stable and potentially reversing geomagnetic field at ca. 3.5 Ga. Earth and Planetary Science Letters, 302, 314328.

    Google Scholar 

  • Bolin, B. (1950). On the influence of the Earth’s orography on the general character of the westerlies. Tellus, 2(3). http://www.tellusa.net/index.php/tellusa/article/download/8547/9993.

  • Bond, D. P. G., Hilton, J., Wignall, P. B., Ali, J. R., Stevens, L. G., Sun, Y., and Lai, X. (2010). The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews, 102, 100–116, https://doi.org/10.1016/j.earscirev.2010.07.004.

  • Bond, D. P. G. & Wignall, P. B. (2014). Large igneous provinces and mass extinctions: An update. In G. Keller, & A. C. Kerr (Eds.), Volcanism, impacts, and mass extinctions: Causes and effects: Geological society of America special paper, 505 (p. 29). https://doi.org/10.1130/2014.2505(02).

  • Bonifacie, M., et al. (2017). Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe) CO3 carbonates. Geochimica et Cosmochimica Acta, 200(1), 255–279.

    Article  CAS  Google Scholar 

  • Bonnefille, R. (2010). Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global and Planetary Change, 72, 390–411.

    Article  Google Scholar 

  • Boos, W. R. (2015). A review of recent progress on Tibet’s role in the South Asian monsoon. CLIVAR Exchanges, 19(23), 27.

    Google Scholar 

  • Bornemann, A., Norris, R. D., Friedrich, O., Beckmann, B., Schouten, S., et al. (2008). Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science, 319, 189–192.

    Google Scholar 

  • Brierley, C. M., & Fedorov, A. V. (2016). Comparing the impacts of Miocene–Pliocene changes in Inter-Ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia. Earth and Planetary Science Letters, 444(juin), 116–130. https://doi.org/10.1016/j.epsl.2016.03.010.

  • Broccoli, A. J., & Manabe, S. (1992). The effects of orography on Mid-latitude Northern Hemisphere Dry Climates. Journal of Climate, 5(11), 1181–1201. https://doi.org/10.1175/1520-0442(1992)005.

  • Cane, M. A., & Molnar, P. (2001). Closing of the Indonesian Seaway as a Precursor to East African aridification around 3–4 million years ago. Nature, 411, 157–162.

    Article  CAS  Google Scholar 

  • Caquineau, T., Paquette, J.-L., & Philippot, P. (2018). U-Pb detrital zircon geochronology of the Turee Creek Group, Hamersley Basin, Western Australia: Timing and correlation of the Paleoproterozoic glaciations. Precambrian Research, 307, 34–50. https://doi.org/10.1016/j.precamres.2018.01.003.

    Article  CAS  Google Scholar 

  • Chaboureau, A. C., Sepulchre, P., Donnadieu, Y., & Franc, A. (2014). Tectonic-driven climate change and the diversification of angiosperms. Proceedings of the National Academy of Sciences, 111(39), 14066–14070. https://doi.org/10.1073/pnas.1324002111.

  • Charney, J. G., & Eliassen, A. (1949). A numerical method for predicting the perturbations of the Middle Latitude Westerlies. Tellus, 1(2): 38–54. https://doi.org/10.1111/j.2153-3490.1949.tb01258.x.

  • Chen, G.-S., Liu, Z., & Kutzbach, J. E. (2014). Reexamining the barrier effect of the Tibetan Plateau on the South Asian Summer Monsoon. Climate of the Past, 10(3),1269–1275. https://doi.org/10.5194/cp-10-1269-2014.

  • Cogné, J. P., & Humler, E. (2006). Trends and rhythms in global seafloor generation rate. Geochemistry, Geophysics, Geosystems, 7, Q03011. https://doi.org/10.1029/2005GC001148.

  • Copper, P., & Scotese, C. R. (2003). Megareefs in Middle Devonain super greenhouse climates. Special Publications - Geological Society of America, 370, 209–230.

    Google Scholar 

  • Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T. B., et al. (2019). Most Earth-surface calcites precipitate out of isotopic equilibrium. Nature Communications, 10(1), 429. https://doi.org/10.1038/s41467-019-08336-5.

    Article  CAS  Google Scholar 

  • De Wit, M. J., & Furnes, H. (2016). 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone BeltPaleoarchean crust in cold environments. Science Advances, 2, e1500368. https://doi.org/10.1126/sciadv.1500368.

  • Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., et al. (2017). Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 543(7643), 60–64. https://doi.org/10.1038/nature21377.

    Article  CAS  Google Scholar 

  • Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A., Meert, J. (2004). A ‘snowball Earth’climate triggered by continental break-up through changes in runoff.Nature, 428(6980), 303–306.

    Google Scholar 

  • Donnadieu, Y., Pucéat, E., Moiroud, M., Guillocheau, F., & Deconinc,. J. F. (2016). A better-ventilated ocean triggered by late Cretaceous changes in continental configuration. Nature Communications, 7 (janvier), 10316. https://doi.org/10.1038/ncomms10316.

  • Dromart, G., Garcia, J.-P., Picard, S., Atrops, F., Lécuyer, C., & Sheppard, S. M. F. (2003). Ice Age at the Middle–Late Jurassic Transition? Earth and Planetary Science Letters, 213(3–4), 205–220. https://doi.org/10.1016/S0012-821X(03)00287-5.

  • Dubiel, R. F., Parrish, J. T., Parrish, J. M., & Good, S. C. (1991). The Pangaean megamonsoon: Evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios, 6, 347–370.

    Google Scholar 

  • Eiler, J. M. (2007). “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262, 309–327.

    Google Scholar 

  • Erwin, D. H. (1994). The Permo-Triassic extinction. Nature, 367, 231–236. https://doi.org/10.1038/367231a0.

    Google Scholar 

  • Flohn, H. (1950). Neue Anschauungen über die allgemeine Zirkulation der Atmosphäre und ihre klimatische Bedeutung. Erdkunde, 4(3/4), 141–162.

    Google Scholar 

  • Fluteau, F., Besse, J., Broutin, J., Ramstein, G. (2001). The Late Permian climate. What can be inferred from climate modelling concerning Pangea scenarios and Hercynian range altitude? Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 39–71.

    Google Scholar 

  • Fluteau, F., Ramstein, G., Besse J. (1999). Simulating the evolution of the Asian and African Monsoons during the past 30 Myr using an atmospheric general circulation model. Journal of Geophysical Research, 104(D10), 11995–12018.

    Google Scholar 

  • Fluteau, F., et al. (2006). The impacts of the Paleogeography and sea level changes on the Mid Cretaceous climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3–4), 357–381. https://doi.org/10.1016/j.palaeo.2006.11.016

  • Fluteau, F., Ramstein, G., Besse, J., Guiraud, R., & Masse. J. P. (2007). Impacts of Palaeogeography and sea level changes on the Mid Cretaceous climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 357–381.

    Google Scholar 

  • Ghienne, J-F., Moreau, J., Degermann, L. et al. (2013). Lower Palaeozoic unconformities in an intracratonic platform setting: Glacial erosion versus tectonics in the eastern Murzuq Basin (southern Libya). International Journal of Earth Sciences, 102(2), 455–482.

    Google Scholar 

  • Goddéris, Y., Donnadieu, Y., Carretier, S., Aretz, M., Dera, G., Macouin, M., & Regard, V. (2017). Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nature Geoscience, 10(5): 382–386. https://doi.org/10.1038/ngeo2931.

  • Granot, R., & Dyment, J. (2015). The Cretaceous opening of the South Atlantic Ocean. Earth and Planetary Science Letters, 414(mars), 156–163. https://doi.org/10.1016/j.epsl.2015.01.015.

  • Haq, B. U., et al. (1987). Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science, 235, 1156–1166.

    Google Scholar 

  • Haqq-Misra, J. D., et al. (2008). A revised, Hazy methane greenhouse for the Archean Earth. Astrobiology, 8, 1127–1137.

    Google Scholar 

  • Haug, G. H., & Tiedemann, R. (1998). Effect of the formation of the Isthmus of Panama on Atlantic Ocean Thermohaline circulation. Nature, 393, 673–676.

    Article  CAS  Google Scholar 

  • Hoareau, G., Bomou, B., van Hinsbergen, D. J. J., Carry, N., Marquer, D. et al. (2015). Did high Neo-Tethys subduction rates contribute to early Cenozoic warming? Climate of the Past, 11(12), 1751–1767.

    Google Scholar 

  • Hoffman, et al. (2017). Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3, e1600983.

    Article  Google Scholar 

  • Hren, M. T., Sheldon, N. D., Grimes, S. T., Collinson, M. E, Hooker, J. J., Bugler, M., Lohmann, K. C. (2013). Terrestrial cooling in Northern Europe during the Eocene–Oligocene transition, PNAS, 110, 7562–7567.

    Google Scholar 

  • Hu, S., & Boos, W. R. (2017). Competing effects of surface Albedo and Orographic elevated heating on regional climate: Albedo-Elevation compensation. Geophysical Research Letters, 4(13), 6966–6973. https://doi.org/10.1002/2016GL072441.

  • Jaramillo, C. (2018). Evolution of the Isthmus of Panama: Biological, Paleoceanographic and Paleoclimatological implications. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (1st ed.). Wiley.

    Google Scholar 

  • Jung, G., Prange, M., & Schulz, M. (2014). Uplift of Africa as a potential cause for Neogene Intensification of the Benguela upwelling system. Nature Geoscience, 7(10), 741–747. https://doi.org/10.1038/ngeo2249.

  • Kasting, J., & Howard, M. T. (2006). Atmospheric composition and climate on the early Earth. Philosophical Transactions of the Royal Society B, 361, 1733–1742.

    Google Scholar 

  • Kennett, J. P. (1977). Cenozoic evolution of Antarctic Glaciation, the Circum-Antarctic Ocean, and their impact on global Paleoceanography. Journal of Geophysical Research, 82(27), 3843–3860. https://doi.org/10.1029/JC082i027p03843.

  • Kiehl, J. T., & Shields, C. A. (2005). Climate simulation of the latest Permian: Implications for mass extinction. Geology, 33(9), 757–760. https://doi.org/10.1130/G21654.1.

  • Kutzbach, J. E., Prell, W. L., & Ruddiman, W. F. (1993). Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. The Journal of Geology, 101(2), 177–190. https://doi.org/10.1086/648215.

  • Knauth, L. P., & Lowe, D. R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geological Society of America Bulletin, 115, 566580 (2003).

    Google Scholar 

  • Ladant, J. B., Donnadieu, Y. (2016). Palaeogeographic regulation of glacial events during the Cretaceous supergreenhous. Nature communications, 7, Article number: 12771.

    Google Scholar 

  • Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D., & Zhang, Z.-S. (2012). Deciphering the role of Southern Gateways and carbon dioxide on the onset of the Antarctic circumpolar current. Paleoceanography, 27(4), n/a–n/a. https://doi.org/10.1029/2012PA002345.

  • Le Hir, G., Donnadieu, Y., Goddéris, Y., Meyer-Berthaud, B., Ramstein, G., & Blakey, R. C. (2011). The climate change caused by the land plant invasion in the Devonian. Earth and Planetary Science Letters, 310(3), 203–212. https://doi.org/10.1016/j.epsl.2011.08.042.

    Article  CAS  Google Scholar 

  • Lowe, D. R., & Tice, M. M. (2004). Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology, 32, 493–496.

    Article  CAS  Google Scholar 

  • Lunt, D. J., et al. (2008). Closure of the Panama Seaway during the Pliocene: Implications for climate and Northern Hemisphere Glaciation. Climate Dynamics, 3, 1–18.

    Google Scholar 

  • Maffre, P., Ladant, J. B., Donnadieu, Y., Sepulchre, P., & Goddéris, Y. (2018). The influence of Orography on modern ocean circulation. Climate Dynamics, 50(3–4), 1277–1289. https://doi.org/10.1007/s00382-017-3683-0.

  • Matte, P. (1986). Tectonics and plate Tectonics model for the Variscan Belt of Europe. Tectonophysics, 126, 329–374.

    Article  Google Scholar 

  • Meyer-Berthaud, B., Scheckler, S., Wendt, J. (1999). Archaeopteris is the earliest known modern tree. Nature, 398, 700–701.

    Google Scholar 

  • Molnar, P., Boos, W. R., & Battisti, D. S. (2010). Orographic controls on climate and Paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38(1), 77–102. https://doi.org/10.1146/annurev-earth-040809-152456.

  • Montañez, I., & Poulsen, C. (2013). The late Paleozoic ice age: An evolving paradigm. Annual Review of Earth and Planetary Sciences, 41, 24.1–24.28.

    Google Scholar 

  • Montañez, I. P., McElwain, J. C., Poulsen, C. J., White, J. D., DiMichele, W. A., Wilson, J. P., Griggs, G., & Hren, M. T. (2016). Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles. Nature Geoscience, 9(11), 824–828. https://doi.org/10.1038/ngeo2822.

  • Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., et al. (2015). Middle Miocene closure of the Central American Seaway. Science, 348(6231), 226–229. https://doi.org/10.1126/science.aaa2815.

    Article  CAS  Google Scholar 

  • Murphy, D. P., & Thomas, D. J. (2013). The evolution of late Cretaceous deep-ocean circulation in the Atlantic Basins: Neodymium isotope evidence from South Atlantic Drill Sites for Tectonic controls: Cretaceous Atlantic deep circulation. Geochemistry, Geophysics, Geosystems, 14(12), 5323–5340. https://doi.org/10.1002/2013GC004889.

  • O’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., et al. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8), e1600883. https://doi.org/10.1126/sciadv.1600883.

    Article  Google Scholar 

  • Potter, S. F., Dawson, E. J., & Frierson, D. M. W. (2017). Southern African Orography impacts on low clouds and the Atlantic ITCZ in a coupled model: African Orography impacts on the ITCZ. Geophysical Research Letters, 44(7), 3283–389. https://doi.org/10.1002/2017GL073098.

  • Poulsen, C. J., Ehlers, T. A., & Insel, N. (2010). Onset of convective rainfall during gradual late Miocene rise of the Central Andes. Science, 328(5977): 490–493. https://doi.org/10.1126/science.1185078.

  • Poulsen, C. J., Gendaszek, A. S., & Jacob, R. L. (2003). Did the rifting of the Atlantic Ocean Cause the Cretaceous thermal maximum? Geology, 31(2), 115–118. https://doi.org/10.1130/0091-7613(2003)031%3c0115:DTROTA%3e2.0.CO;2.

  • Ramstein, G., Fluteau, F., Besse, J., Joussaume, S. (1997). Effects of orogeny, sea-level change and tectonic drift on the monsoon over the past 30 millions years. Nature, 386, 788–795.

    Google Scholar 

  • Rind, D. G., Russell, G., & Ruddiman, W. F. (1997). The effects of uplift on ocean‐atmosphere circulation. In W. F. Ruddiman (Ed.), Tectonic uplift and climate change (pp. 123–147). New York: Plenum.

    Google Scholar 

  • Robert, F., & Chaussidon, M. (2006). A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443, 969–972.

    Article  CAS  Google Scholar 

  • Ruddiman, W. F., et al. (1997). The uplift-climate connection: A synthesis. In W. F. Ruddiman (Ed.), Tectonic uplift and climate change (pp. 471–515). New York: Plenum.

    Google Scholar 

  • Sepulchre, P., Arsouze, T., Donnadieu, Y., Dutay, J-C., et al. (2014). Consequences of shoaling of the Central American Seaway determined from modeling Nd isotopes. Paleoceanography, 29(3), 176–189.

    Google Scholar 

  • Sepulchre, P., Ramstein, G., Fluteau, F., Schuster, M., Tiercelin, J. J., & Brunet, M. (2006). Tectonic Uplift and Eastern Africa Aridification. Science, 313(5792), 1419–1423. https://doi.org/10.1126/science.1129158.

  • Sepulchre, P., Sloan, L. C., Snyder, M., & Fiechter, J. (2009). Impacts of Andean Uplift on the Humboldt current system: A climate model sensitivity study. Paleoceanography, 24(4). https://doi.org/10.1029/2008PA001668.

  • Shields, C. A., & Kiehl, J. T. (2018). Monsoonal precipitation in the Paleo-Tethys warm pool during the latest Permian. Palaeogeography, Palaeoclimatology, Palaeoecology, 491(février), 123–136. https://doi.org/10.1016/j.palaeo.2017.12.001.

  • Sijp, W. P., von der Heydt, A. S. Dijkstra, H. A. Flögel, S., Douglas, P. M. J., & Bijl. P. K. (2014). The role of ocean gateways on cooling climate on long time scales. Global and Planetary Change, 119(août), 1–22. https://doi.org/10.1016/j.gloplacha.2014.04.004.

  • Su, B., Jiang, D., Zhang, R., Sepulchre, P., & Ramstein, G. (2018). Difference between the North Atlantic and Pacific Meridional overturning circulation in response to the uplift of the Tibetan Plateau. Climate of the Past, 14(6), 751–762. https://doi.org/10.5194/cp-14-751-2018.

  • Tan, N., Ramstein, G., Dumas, C., Contoux, C., Ladant, J. B., Sepulchre, P., Zhang, Z., & De Schepper, S. (2017). Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth and Planetary Science Letters, 472, 266–276.

    Google Scholar 

  • Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F., & Robert, F. (2017). Warm Archaean Oceans reconstructed from oxygen isotope composition of early-life Remnants. Geochemical Perspectives Letters, 55–65. https://doi.org/10.7185/geochemlet.1706.

  • Valley, J. W. (2006). Early Earth. Elements 2(4), 201–204. https://doi-org.insu.bib.cnrs.fr/10.2113/gselements.2.4.201.

  • Veizer, J., & Prokoph, (2015). Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Science Reviews, 146, 92–104. https://doi.org/10.1016/j.earscirev.2015.03.008.

  • Warner, T. (2004). Desert Meteorology. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511535789.

  • Young, G. M., Von Brunn, V., Gold, D. J. C., & Minter, W. E. L. (1998). Earth’s oldest reported Glaciation: Physical and chemical evidence from the Archean Mozaan Group (2.9 Ga) of South Africa. Journal of Geology, 106, 523–538.

    Article  CAS  Google Scholar 

  • Zachos, J., et al. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    Article  CAS  Google Scholar 

  • Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar J., & Poulton, S. W. (2012). A bistable organic-rich atmosphere on the Neoarchaean Earth. Nature Geoscience, 5, 359–363. https://doi.org/10.1038/ngeo1425.

  • Zhang, R., Jiang, D., Ramstein, G., Zhang, Z., Lippert, P. C. & Yu, E. (2018). Changes in Tibetan Plateau Latitude as an Important factor for understanding East Asian climate since the Eocene: A modeling study. Earth and Planetary Science Letters, 484(février), 295–308. https://doi.org/10.1016/j.epsl.2017.12.034.

  • Zhang, R., Jiang, D., Zhang, Z., & Yu, E. (2015). The impact of regional uplift of the Tibetan Plateau on the Asian Monsoon climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 417(janvier), 137–150. https://doi.org/10.1016/j.palaeo.2014.10.030.

  • Zhang, X., Prange, M., Steph, S., Butzin, M., Krebs, U., Lunt, D. J., et al. (2012). Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi-model study. Earth and Planetary Science Letters, 317–318, 76–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Fluteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fluteau, F., Sepulchre, P. (2021). Climate Evolution on the Geological Timescale and the Role of Paleogeographic Changes. In: Ramstein, G., Landais, A., Bouttes, N., Sepulchre, P., Govin, A. (eds) Paleoclimatology. Frontiers in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-24982-3_22

Download citation

Publish with us

Policies and ethics