Skip to main content

Noninvasive Biomarkers for Liver Fibrosis

  • Chapter
  • First Online:
Liver Diseases
  • 2959 Accesses

Abstract

Fibrosis is a serious problem of chronic liver diseases. Liver fibrosis occurs as a response to different causes of chronic liver diseases. The diagnosing of the degree of liver fibrosis is an essential step in the assessment of the severity of the liver disease and is important for better patient care. The reference method for diagnosis and staging of liver fibrosis is liver biopsy, but it is invasive with many complications and limitations. Up to date, many non-invasive direct or indirect serum markers representing the activity of fibrogenesis have been developed. The direct biomarkers are a mirror of extracellular matrix turnover and indirect markers reflect the hepatocellular dysfunction. These markers may be used single or, in conjugation with each other. The major objective of this review is to understand the diagnostic accuracy, advantages and disadvantages of non-invasive biomarkers and scoring systems currently being used for studying liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rojkind M, Greenwel P. The extracellular matrix and the liver. In: Arias IM, Boyer JL, Fausto N, et al., editors. The liver: biology and pathology. 3rd ed. New York, NY: Raven Press; 1994. p. 843–68.

    Google Scholar 

  2. Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 2011;25(2):195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest. 2007;117:539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–56.

    Article  CAS  PubMed  Google Scholar 

  5. Baranova A, Lal P, Birerdinc A, Younossi M. Noninvasive markers for hepatic fibrosis. BMC Gastroenterol. 2011;11:article 91.

    Article  PubMed  Google Scholar 

  6. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wake K. Structure of the sinusoidal wall in the liver. In: Wisse E, Knook DL, Wake K, editors. Cells of the hepatic sinusoid. Leiden: The Kupffer Cell Foundation; 1995. p. 241–6.

    Google Scholar 

  8. Bioulac-Sage P, Lafon ME, Saric J, et al. Nerves and perisinusoidal cells in human liver. J Hepatol. 1990;10:105–12.

    Article  CAS  PubMed  Google Scholar 

  9. Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol. 2007;22(Suppl):S73–8.

    Article  CAS  PubMed  Google Scholar 

  10. Schuppan D, Afdhal N. Liver cirrhosis. Lancet. 2008;371(9615):838–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bedossa P, Paradis V. Liver extracellular matrix in health and disease. J Pathol. 2003;200:504–15.

    Article  PubMed  Google Scholar 

  12. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;275:2247–50.

    Article  CAS  PubMed  Google Scholar 

  13. Schaffner H, Popper H. Capillarization of the sinusoids. Gastroenterology. 1963;44:339–42.

    Article  Google Scholar 

  14. Desmet VJ, Roskams T. Cirrhosis reversal: a duel between dogma and myth. J Hepatol. 2004;40:860–7.

    Article  PubMed  Google Scholar 

  15. Wanless IR, Nakashima E, Sherman M. Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis. Arch Pathol Lab Med. 2000;124:1599–607.

    CAS  PubMed  Google Scholar 

  16. Scott LF. Hepatic fibrosis. In: Schiff ER, Sorrell MF, Maddrey WC, editors. Schiff ‘s diseases of the liver. 11th ed. Singapore: Wiley-Blackwell; 2012. p. 297–305.

    Google Scholar 

  17. Schuppan D, Krebs A, Bauer M, Hahn EG. Hepatitis C and liver fibrosis. Cell Death Differ. 2003;10(Suppl 1):S59–67.

    Article  CAS  PubMed  Google Scholar 

  18. Guo J, Friedman SL. Hepatic fibrogenesis. Semin Liver Dis. 2007;27:413–26.

    Article  CAS  PubMed  Google Scholar 

  19. Sun J. Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells. J Signal Transduct. 2010;2010:985132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Grigorescu M. Noninvasive biochemical markers of liver fibrosis. J Gastrointestin Liver Dis. 2006;15:149–59.

    PubMed  Google Scholar 

  21. Murawaki Y, Ikuta Y, Idobe Y, Kawasaki H. Serum matrix metalloproteinase −1 in patients with chronic viral hepatitis. J Gastroenterol Hepatol. 1999;14(2):138–45.

    Article  CAS  PubMed  Google Scholar 

  22. Boeker KHW, Haberkorn CI, Michels D, Flemming P, Manns MP, Lichtinghagen R. Diagnostic potential of circulating TIMP-1 and MMP-2 as markers of liver fibrosis in patients with chronic hepatitis. Clin Chim Acta. 2002;316(1–2):71–81.

    Article  CAS  PubMed  Google Scholar 

  23. Badra G, Lotfy M, El Refaie A, et al. Significance of serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in chronic hepatitis patients. Acta Microbiol Immunol Hung. 2010;57(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang BB, Min C, Weng HL, et al. Diagnostic value of platelet derived growth factor-BB, transforming growth factor α1, matrix metalloproteinase −1 in serum and peripheral blood mononuclear cells for hepatic fibrosis. World J Gastroenterol. 2003;9(11):2490–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis. 2001;21:351–72.

    Article  CAS  PubMed  Google Scholar 

  26. McGuire RF, Bissell DM, Boyles J, Roll FJ. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology. 1992;15:989–97.

    Article  CAS  PubMed  Google Scholar 

  27. Sebastiani G, Alberti A. Non invasive fibrosis biomarkers reduce but not substitute the need for liver biopsy. World J Gastroenterol. 2006;12:3682–94.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Piccinino F, Sagnelli E, Pasquale G, Giusti G. Complications following percutaneous liver biopsy. A multicentre retrospective study on 68 276 biopsies. J Hepatol. 1986;2:165–73.

    Article  CAS  PubMed  Google Scholar 

  29. Lavanchy D. The global burden of hepatitis C. Liver Int. 2009;29(Suppl 1):74–81.

    Article  PubMed  Google Scholar 

  30. Moorman A, Gordon S, Rupp L, et al. Base line characteristics and mortality among people in care for chronic hepatitis: the chronic hepatitis cohort study. Clin Infect Dis. 2012;56(1):40–50.

    Article  PubMed  Google Scholar 

  31. Cainelli F. Liver diseases in developing countries. World J Hepatol. 2012;4(3):66–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bravo A, Sheth G, Chopra S. Liver biopsy. N Engl J Med. 2001;344(7):495–500.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou K, Lu LG. Assessment of fibrosis in chronic liver diseases. Dig Dis. 2009;10:7–14.

    Article  Google Scholar 

  34. Pinzani M, Rombouts K, Colagrande S. Fibrosis in chronic liver diseases: diagnosis and management. J Hepatol. 2005;42(Suppl 1):S22–36.

    Article  PubMed  Google Scholar 

  35. Morling J, Guha I. Biomarkers of liver fibrosis. Clin Liver Dis. 2016;7(6):139–42.

    Article  Google Scholar 

  36. Grigorescu M. Noninvasive biochemical markers of liver fibrosis. J Gastrointestinal Liver Dis. 2006;15:149–59.

    Google Scholar 

  37. Baranova A, Lal P, Birerdinc A, et al. Non-invasive markers for hepatic fibrosis. BMC Gastroenterol. 2011;11:91.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pradat P, Alberti A, Poynard T, et al. Predictive value of ALT levels for histologic findings in chronic hepatitis C: a European collaborative study. Hepatology. 2002;36(4):973–7.

    Article  PubMed  Google Scholar 

  39. Prat D, Taioli E, Zanella A, et al. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med. 2002;137(1):1–9.

    Article  Google Scholar 

  40. Akbar Hand Fallatah H. Serum ALT levels in a cohort of healthy blood donors and volunteers from Saudi Arabia: the influence of sex and body mass index. Ann Gastroenterol Hepatol. 2010;1:13–9.

    Google Scholar 

  41. Haukeland J, Schreiner L, Lorgen I, Oskar Frigstad S, Bang C, Raknerud N. ASAT/ALAT ratio provides prognostic information independently of Child-Pugh class, gender and age in non-alcoholic cirrhosis. Scand J Gastroenterol. 2008;43(10):1241–8.

    Article  CAS  PubMed  Google Scholar 

  42. McPherson S, Stewart F, Henderson E, Burt A, Day C. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. Gut. 2010;59(9):1265–9.

    Article  PubMed  Google Scholar 

  43. Giannini E, Risso D, Botta F, et al. Validity and clinical utility of the aspartate aminotransferase-alanine aminotransferase ratio in assessing disease severity and prognosis in patients with hepatitis C virus-related chronic liver disease. Arch Intern Med. 2003;163(2):218–24.

    Article  PubMed  Google Scholar 

  44. Sebastiani G, Vario A, Guido M, Alberti A. Sequential algorithms combining non-invasive markers and biopsy for the assessment of liver fibrosis in chronic hepatitis B. World J Gastroenterol. 2007;13(4):525–31.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shiha G, Mousa N, Salah M, Soliman R, Abed S, Elbasiony M, et al. Noninvasive markers for staging fibrosis in chronic hepatitis B patients. Med J Viral Hepat. 2018;2(2):17–23.

    Google Scholar 

  46. Green R, Flamm S. AGA technical review on the evaluation of liver chemistry tests. Gastroenterology. 2002;123:1367–84.

    Article  PubMed  CAS  Google Scholar 

  47. Wai C, Greenson J, Fontana R, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38(2):518–26.

    Article  PubMed  Google Scholar 

  48. da Silva JR, Fakhouri R, Do-Nascimento T, Santos I, Barbosa L. Aspartate aminotransferase to-platelet ratio index for fibrosis and cirrhosis prediction in chronic hepatitis C patients. Braz J Infect Dis. 2008;12(1):15–9.

    PubMed  Google Scholar 

  49. Loaeza-del-Castillo A, Paz-Pineda F, Oviedo-C’ardenas E, S’anchez-Avila F, Vargas-Vor’ackov’a F. AST to platelet ratio index (APRI) for the noninvasive evaluation of liver fibrosis. Ann Hepatol. 2008;7(4):350–7.

    Article  CAS  PubMed  Google Scholar 

  50. Chrysanthos N, Papatheodoridis G, Savvas S, et al. Aspartate aminotransferase to platelet ratio index for fibrosis evaluation in chronic viral hepatitis. Eur J Gastroenterol Hepatol. 2006;18(4):389–96.

    Article  CAS  PubMed  Google Scholar 

  51. Lok A, Ghany M, Goodman Z, et al. Predicting cirrhosis in patients with hepatitis C based on standard laboratory tests: results of the HALT-C cohort. Hepatology. 2005;42(2):282–92.

    Article  PubMed  Google Scholar 

  52. Toniutto P, Fabris C, Bitetto D, et al. Role of AST to platelet ratio index in the detection of liver fibrosis in patients with recurrent hepatitis C after liver transplantation. J Gastroenterol Hepatol. 2007;22(11):1904–8.

    Article  PubMed  Google Scholar 

  53. Toson SA, Shiha GE, El-Mezayen HA, El-Sharkawy AM. Diagnostic performance of T lymphocyte subpopulations in assessment of liver fibrosis stages in hepatitis C virus patients: simple noninvasive score. Eur J Gastroenterol Hepatol. 2016;28(8):931–9.

    Article  CAS  Google Scholar 

  54. Croquet V, Vuillemin E, Ternisien C, et al. Prothrombin index is an indirect marker of severe liver fibrosis. Eur J Gastroenterol Hepatol. 2002;14:1133–41.

    Article  CAS  PubMed  Google Scholar 

  55. Pilette C, Oberti F, Aubé C, et al. Non-invasive diagnosis of esophageal varices in chronic liver diseases. J Hepatol. 1999;31:867–73.

    Article  CAS  PubMed  Google Scholar 

  56. Kim BK, Kim DY, Park JY, Ahn SH, Chon CY, et al. Validation of FIB-4 and comparison with other simple noninvasive indices for predicting liver fibrosis and cirrhosis in hepatitis B virus-infected patients. Liver Int. 2010;30:546–53.

    Article  PubMed  Google Scholar 

  57. Yang HR, Kim HR, Kim MJ, Ko JS, Seo JK. Noninvasive parameters and hepatic fibrosis scores in children with nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18(13):1525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mallet V, Dhalluin-Venier V, Roussin C, et al. The accuracy of the FIB-4 index for the diagnosis of mild fibrosis in chronic hepatitis B. Aliment Pharmacol Ther. 2009;29(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  59. Shiha G, Seif S, Eldesoky A, Elbasiony M, Soliman R, Metwally A. A simple bedside blood test (Fibrofast; FIB-5) is superior to FIB-4 index for the differentiation between non-significant and significant fibrosis in patients with chronic hepatitis C. Hepatol Int. 2017;11(3):286–91.

    Article  CAS  PubMed  Google Scholar 

  60. Angulo P, Hui J, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:847–54.

    Article  CAS  Google Scholar 

  61. Shah AG, Lydecker A, Murray K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koda M, Matunaga Y, Kawakami M, et al. FibroIndex, a practical index for predicting significant fibrosis in patients with chronic hepatitis C. Hepatology. 2007;45(2):297–306.

    Article  PubMed  Google Scholar 

  63. Halfon P, Penaranda G, Renou C, et al. External validation of FibroIndex. Hepatology. 2007;46(1):280–1.

    Article  PubMed  Google Scholar 

  64. Poynard T, Imbert-Bismut F, Munteanu M, et al. Overview of the diagnostic value of biochemical markers of liver fibrosis (FibroTest, HCV FibroSure) and necrosis (ActiTest) in patients with chronic hepatitis C. Comp Hepatol. 2004;3:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Poynard T, Munteanu M, Deckmyn O, et al. Validation of liver fibrosis biomarker (FibroTest) for assessing liver fibrosis progression: proof of concept and first application in a large population. J Hepatol. 2012;2012(57):541–8.

    Google Scholar 

  66. Cales P, Veillon P, Konate A, et al. Reproducibility of blood tests of liver fibrosis in clinical practice. Clin Biochem. 2008;41:10–8.

    Article  PubMed  Google Scholar 

  67. Poynard T, Munteanu M, Imbert-Bismut F, et al. Prospective analysis of discordant results between biochemical markers and biopsy in patients with chronic hepatitis C. Clin Chem. 2004;50:1344–55.

    Article  CAS  PubMed  Google Scholar 

  68. Rockey DC, Bissell DM. Noninvasive measures of liver fibrosis. Hepatology. 2006;43:S113–20.

    Article  CAS  PubMed  Google Scholar 

  69. Salkic NN, Jovanovic P, Hauser G, Brcic M. FibroTest/Fibrosure for significant liver fibrosis and cirrhosis in chronic hepatitis B: A meta-analysis. Am J Gastroenterol. 2014;109(6):796–809.

    Article  PubMed  Google Scholar 

  70. Munteanu M, Ratziu V, Morra R, et al. Noninvasive biomarkers for the screening of fibrosis, steatosis and steatohepatitis in patients with metabolic risk factors: FibroTest-FibroMax experience. J Gastrointestin Liver Dis. 2008;17:187–91.

    PubMed  Google Scholar 

  71. Mousa N, Abdel-Razik A, Sheta T, Shabana W, Zakria Z, Awad M, et al. Serum Leptin and Homeostasis Model Assessment-IR as a novel predictor of early liver fibrosis among patients with chronic hepatitis B virus infection. Br J Biomed Sci. 2018;75(4):192–6.

    Article  CAS  PubMed  Google Scholar 

  72. Abdel-Razik A, Mousa N, Besheer TA, Eissa M, Elhelaly R, Arafa M, El-Wakeel N, Eldars W. Neutrophil to lymphocyte ratio as a reliable marker to predict insulin resistance and fibrosis stage in chronic hepatitis C virus infection. Acta Gastroenterol Belg. 2015;78(4):386–92.

    PubMed  Google Scholar 

  73. Poynard T, Aubert A, Bedossa P, et al. A simple biological index for detection of alcoholic liver disease in drinkers. Gastroenterology. 1991;100(5):1397–402.

    Article  CAS  PubMed  Google Scholar 

  74. Nguyen-Khac E, Chatelain D, Tramier B, et al. Assessment of asymptomatic liver fibrosis in alcoholic patients using FibroScan: prospective comparison with seven non-invasive laboratory tests. Aliment Pharmacol Ther. 2008;28:1188–98.

    Article  CAS  PubMed  Google Scholar 

  75. Oberti F, Valsesia E, Pilette C, et al. Noninvasive diagnosis of hepatic fibrosis or cirrhosis. Gastroenterology. 1997;113:1609–16.

    Article  CAS  PubMed  Google Scholar 

  76. Forns X, Ampurdanes S, Llovet J, Aponte J, Quinto L, Martinez-Bauer E, et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology. 2002;36:986–92.

    Article  PubMed  Google Scholar 

  77. Adams LA, Bulsara M, Rossi E, et al. Hepascore: an accurate validated predictor of liver fibrosis in chronic hepatitis C infection. Clin Chem. 2005;51:1867–73.

    Article  CAS  PubMed  Google Scholar 

  78. Huang Y, Adams LA, Joseph J, Bulsara MK, Jeffrey GP. The ability of Hepascore to predict liver fibrosis in chronic liver disease: a meta-analysis. Liver Int. 2017;37:121–31.

    Article  PubMed  Google Scholar 

  79. Abdel-Razik A, Mousa N, Shabana W, Refaey M, El Mahdy Y, Elhelaly R, Elzehery R, Zalata K, Arafa M, Elbaz S, Hafez M, Awad M. A novel model using mean platelet volume and neutrophil to lymphocyte ratio as a marker of nonalcoholic steatohepatitis in NAFLD patients: multicentric study. Eur J Gastroenterol Hepatol. 2016;28(1):e1–9.

    Article  CAS  PubMed  Google Scholar 

  80. Calès P, Boursier J, Oberti F, Hubert I, Gallois Y, Rousselet M, et al. FibroMeters: a family of blood tests for liver fibrosis. Gastroenterol Clin Biol. 2008;32(6 Suppl 1):40–51.

    Article  PubMed  Google Scholar 

  81. Munteanu M, Tiniakos D, Anstee Q, Charlotte F, Marchesini G, Bugianesi E, et al. Diagnostic performance of FibroTest, SteatoTest and ActiTest in patients with NAFLD using the SAF score as histological reference. Aliment Pharmacol Ther. 2016;44(8):877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Poynard T, Ratziu V, Naveau S, Thabut D, Charlotte F, Messous D, et al. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Compar Hepatol. 2005;4:Article 10.

    Article  CAS  Google Scholar 

  83. Lassailly G, Caiazzo R, Hollebecque A, Buob D, Leteurtre E, Arnalsteen L, et al. Validation of noninvasive biomarkers (FibroTest, SteatoTest, and NashTest) for prediction of liver injury in patients with morbid obesity. Eur J Gastroenterol Hepatol. 2011;23(6):499–506.

    Article  PubMed  Google Scholar 

  84. Callewaert N, Vlierberghe HV, Hecke AV, Laroy W, Delanghe J, Contreras R. Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics. Nat Med. 2004;10:429–34.

    Article  CAS  PubMed  Google Scholar 

  85. Younossi ZM, Baranova A, Stepanova M, Page S, Calvert VS, Afendy A, Goodman Z, Chandhoke V, Liotta L, Petricoin E. Phosphoproteomic biomarkers predicting histologic nonalcoholic steatohepatitis and fibrosis. J Proteome Res. 2010;9(6):3218–24.

    Article  CAS  PubMed  Google Scholar 

  86. Baranova A, Lal P, Birerdinc A, Younossi Z. Noninvasive markers for hepatic fibrosis. BMC Gastroenterol. 2011;11:Article 92.

    Article  Google Scholar 

  87. Castera L. Noninvasive methods to assess liver disease in patients with hepatitis B or C. Gastroenterology. 2012;142:1293–302.

    Article  PubMed  Google Scholar 

  88. Tamura H, Matsuda A, Kidoguchi N, Matsumura O, Mitarai T, Isoda K. A family with two sisters with collagenofibrotic glomerulonephropathy. Am J Kidney Dis. 1996;27(4):588–95.

    Article  CAS  PubMed  Google Scholar 

  89. Kalluri R. Basement membranes: structure, assembly, and role in tumour angiogenesis. Nat Rev Cancer. 2003;3:422–33.

    Article  CAS  PubMed  Google Scholar 

  90. Takahashi H. Type IV collagen 7S domain is an independent clinical marker of the severity of fibrosis in patients with nonalcoholic steatohepatitis before the cirrhotic stage. J Gastroenterol. 2007;42:375–81.

    Article  PubMed  CAS  Google Scholar 

  91. Kropf J, Gressner AM, Negwer A. Efficacy of serum laminin measurement for diagnosis of fibrotic liver diseases. Clin Chem. 1988;34:2026–30.

    CAS  PubMed  Google Scholar 

  92. Li F, Zhu CL, Zhang H, Huang H, Wei Q, Zhu X, Cheng XY. Role of hyaluronic acid and laminin as serum markers for predicting significant fibrosis in patients with chronic hepatitis B. Braz J Infect Dis. 2012;16:9–14.

    CAS  PubMed  Google Scholar 

  93. Leroy V. Other non-invasive markers of liver fibrosis. Gastroenterol Clin Biol. 2008;32(6 Suppl):52–7.

    Article  CAS  PubMed  Google Scholar 

  94. Halfon P, Bourlière M, Pénaranda G, et al. Accuracy of hyaluronic acid level for predicting liver fibrosis stages in patients with hepatitis C virus. Comp Hepatol. 2005;4:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Körner T, Kropf J, Gressner AM. Serum laminin and hyaluronan in liver cirrhosis: markers of progression with high prognostic value. J Hepatol. 1996;25(5):684–8.

    Article  PubMed  Google Scholar 

  96. Geramizadeh B, Janfeshan K, Saberfiroozi M. Serum hyaluronic acid as a noninvasive marker of hepatic fibrosis in chronic hepatitis B. Saudi J Gastroenterol. 2008;14(4):174–7.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Montazeri G, Estakhri A, Mohamadnejad M, et al. Serum hyaluronate as a non-invasive marker of hepatic fibrosis and inflammation in HBeAg-negative chronic hepatitis B. BMC Gastroenterol. 2005;5:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Guéchot J, Laudat A, Loria A, Serfaty L, Poupon R, Giboudeau J. Diagnostic accuracy of hyaluronan and type III procollagen amino-terminal peptide serum assays as markers of liver fibrosis in chronic viral hepatitis C evaluated by ROC curve analysis. Clin Chem. 1996;42:558–63.

    PubMed  Google Scholar 

  99. Montazeri G, Estakhri A, Mohamadnejad M, et al. Serum hyaluronate as a non-invasive marker of hepatic fibrosis and inflammation in HBeAg-negative chronic hepatitis B. BMC Gastroenterol. 2005;5:Article 32.

    Article  CAS  Google Scholar 

  100. Vizzutti F, Arena U, Nobili V, et al. Non-invasive assessment of fibrosis in non-alcoholic fatty liver disease. Ann Hepatol. 2009;8(2):89–94, 2009

    Article  PubMed  Google Scholar 

  101. Naveau S, Raynard B, Ratziu V, et al. Biomarkers for the prediction of liver fibrosis in patients with chronic alcoholic liver disease. Clin Gastroenterol Hepatol. 2005;3(2):167–74.

    Article  PubMed  Google Scholar 

  102. Lausen M, Lynch N, Schlosser A, Tornoe I, Saekmose SG, et al. Microfibril-associated protein 4 is present in lung washings and binds to the collagen region of lung surfactant protein D. J Biol Chem. 1999;274:32234–40.

    Article  CAS  PubMed  Google Scholar 

  103. Schlosser A, Thomsen T, Shipley JM, Hein PW, Brasch F, et al. Microfibril-associated protein 4 binds to surfactant protein A (SP-A) and colocalizes with SP-A in the extracellular matrix of the lung. Scand J Immunol. 2006;64:104–16.

    Article  CAS  PubMed  Google Scholar 

  104. Molleken C, Sitek B, Henkel C, Poschmann G, Sipos B, et al. Detection of novel biomarkers of liver cirrhosis by proteomic analysis. Hepatology. 2009;49:1257–66.

    Article  PubMed  CAS  Google Scholar 

  105. Molleken C, Sitek B, Henkel C, Poschmann G, Sipos B, Wiese S, et al. Detection of novel biomarkers of liver cirrhosis by proteomic analysis. Hepatology. 2009;49(4):1257–66.

    Article  PubMed  CAS  Google Scholar 

  106. Takahara T, Furui K, Yata Y, Jin B, Zhang LP, Nambu S, et al. Dual expression of matrix protease −2 and membrane type I-matrix proteinase in fibrotic human livers. Hepatology. 1997;26:1521–9.

    Article  CAS  PubMed  Google Scholar 

  107. Walsh KM, Timms P, Campbell S, MacSween RN, Morris AJ. Plasma levels of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases-1 and -2 (TIMP-1 and TIMP-2) as non invasive markers of liver disease in chronic hepatitis C: comparison using ROC analysis. Dig Dis Sci. 1999;44:624–30.

    Article  CAS  PubMed  Google Scholar 

  108. Pinzani M, Marra F. Cytokine receptors and signalling in hepatic stellate cells. Semin Liver Dis. 2001;21(3):397–416.

    Article  CAS  PubMed  Google Scholar 

  109. Harada KI, Shiota G, Kawasaki H. Transforming growth factor α and epidermal growth factor receptor in chronic liver disease and hepatocellular carcinoma. Liver. 1999;19(4):318–25.

    Article  CAS  PubMed  Google Scholar 

  110. Nelson DR, Gonzalez PRP, Qian K, et al. Transforming growth factor-β1 in chronic hepatitis C. J Viral Hepat. 1997;4(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  111. Kanzler S, Baumann M, Schirmacher P, et al. Prediction of progressive liver fibrosis in hepatitis C infection by serum and tissue levels of transforming growth factor-β. J Viral Hepat. 2001;8(6):430–7.

    Article  CAS  PubMed  Google Scholar 

  112. Manning DS, Afdhal NH. Diagnosis and quantitation of fibrosis. Gastroenterology. 2008;134(6):1670–81.

    Article  CAS  PubMed  Google Scholar 

  113. Gressner OA, Gressner AM. Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int. 2008;28:1065–79.

    Article  CAS  PubMed  Google Scholar 

  114. Pinzami M, Milani S, Herbst H, et al. Expression of platelet-derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol. 1996;148:785–800.

    Google Scholar 

  115. Ikura Y, Morimoto H, Ogami M, et al. Expression of platelet-derived growth factor and its receptor in livers of patients with chronic liver disease. J Gastroenterol. 1997;32:496–501.

    Article  CAS  PubMed  Google Scholar 

  116. Zhou J, Deng Y, Yan L, Zhao H, Wang G. Serum platelet derived growth factor BB levels: a potential biomarker for the assessment of liver fibrosis in patients with chronic hepatitis B. Int J Infect Dis. 2016;49:94–9.

    Article  CAS  PubMed  Google Scholar 

  117. Yoshida S, Ikenaga N, Liu SB, et al. Extra hepatic platelet-derived growth factor-beta, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology. 2014;147:1378–92.

    Article  CAS  PubMed  Google Scholar 

  118. Susanne GS, Belinda M, Peer BC, et al. Microfibrillar associated protein 4: a potential biomarker for screening for liver fibrosis in a mixed patient cohort. PLoS One. 2015;10(10):e0140418.

    Article  CAS  Google Scholar 

  119. Molleken C, Sitek B, Henkel C, Poschmann G, Sipos B, Wiese S, Warscheid B, et al. Detection of novel biomarkers of liver cirrhosis by proteomic analysis. Hepatology. 2009;49(4):1257–66.

    Article  PubMed  CAS  Google Scholar 

  120. Christian M, Barbara S, Corinna H, et al. Detection of novel biomarkers of liver cirrhosis by proteomic analysis. Hepatology. 2009;49:1257–66.

    Article  CAS  Google Scholar 

  121. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology. 2002;40:403–39.

    Article  CAS  PubMed  Google Scholar 

  122. Yilmaz Y, Dolar E, Ulukaya E, et al. Soluble forms of extracellular cytokeratin 18 may differentiate simple steatosis from non-alcoholic steatohepatitis. World J Gastroenterol. 2007;13:837–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang M, Xu D, Liu Y, et al. Combined serum biomarkers in non-invasive diagnosis of non-alcoholic steatohepatitis. PLoS One. 2015;10(6):e0131664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Feldstein A, Alkhouri N, De Vito R, Alisi A, Lopez R, Nobili V. Serum cytokeratin-18 fragment levels are useful biomarkers for nonalcoholic steatohepatitis in children. Am J Gastroenterol. 2013;108:1526–31.

    Article  CAS  PubMed  Google Scholar 

  125. Juran BD, Lazaridis KN. Genomics and complex liver disease: challenges and opportunities. Hepatology. 2006;44:1380–90.

    Article  CAS  PubMed  Google Scholar 

  126. Chalasani N, Guo X, Loomba R, et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic Fatty liver disease. Gastroenterology. 2010;139:1567–76. e1561–1566

    Article  PubMed  Google Scholar 

  127. Thomasson HR, Crabb DW, Edenberg HJ, Li TK, Hwu HG, Chen CC, Yeh EK, Yin SJ. Low frequency of the ADH2∗2 allele among atayal natives of Taiwan with alcohol use disorders. Alcohol Clin Exp Res. 1994;18:640–3.

    Article  CAS  PubMed  Google Scholar 

  128. Huang H, Shiffman ML, Friedman S, et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology. 2007;46:297–306.

    Article  CAS  PubMed  Google Scholar 

  129. Huang H, Shiffman ML, Cheung RC, Layden T, Friedman S, Abar OT, et al. Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C. Gastroenterology. 2006;130:1679–87.

    Article  CAS  PubMed  Google Scholar 

  130. Powell EE, Edwards-Smith CJ, Hay JL, Clouston AD, Crawford DHG, Shorthouse C, Purdie DM, Jonsson JR. Host genetic factors influence disease progression in chronic hepatitis. Hepatology. 2000;31:828–33.

    Article  CAS  PubMed  Google Scholar 

  131. Gewaltig J, Mangasser-Stephan K, Gartung C, Biesterfeld S, Gressner AM. Association of polymorphisms of the transforming growth factor-1 gene with the rate of progression of HCV-induced liver fibrosis. Clin Chim Acta. 2002;316:83–94.

    Article  CAS  PubMed  Google Scholar 

  132. Tag CG, Mengsteab S, Hellerbrand C, Lammert F, Gressner AM, Weiskirchen R. Analysis of the transforming growth factor-beta1 (TGF-beta1) codon 25 gene polymorphism by Light Cycler-analysis in patients with chronic hepatitis C infection. Cytokine. 2003;24:173–81.

    Article  CAS  PubMed  Google Scholar 

  133. Wang H, Mengsteab S, Tag CG, Gao CF, Hellerbrand C, Lammert F, Gressner AM, Weiskirchen R. Transforming growth factor-beta1 polymorphisms are associated with progression of liver fibrosis in Caucasians with chronic hepatitis C infection. World J Gastroenterol. 2005;11:1929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Osterreicher CH, Datz C, Stickel F, Hellerbrand C, Penz M, Hofer H, Wrba F, Penner E, Schuppan D, Ferenci P. TGF-[beta]1 codon 25 gene polymorphism is associated with cirrhosis in patients with hereditary hemochromatosis. Cytokine. 2005;31:142–8.

    Article  CAS  PubMed  Google Scholar 

  135. Hall RA, Liebe R, Hochrath K, et al. Systems genetics of liver fibrosis: identification of fibrogenic and expression quantitative trail loci in the BXD murine reference population. PLoS ONE. 2014;9(2):e89279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lopez-Rodriguez R, Hernandez-Bartolome A, Borque MJ, et al. Interferon-related genetic markers of necroinflammatory activity in chronic hepatitis C. PLoS One. 2017;12(7):e0180927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  138. Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ. Micro RNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol. 2009;20:65–72.

    Article  Google Scholar 

  139. Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in patients with chronic hepatitis C virus infection. Science. 2010;327:198–201.

    Article  CAS  PubMed  Google Scholar 

  140. Szabo G, Shashi B. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10(9):542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Smith BC, Grove J, Guzail MA, Day CP, Daly AK, Burt AD, et al. Heterozygosity for hereditary hemochromatosis is associated with more fibrosis in chronic hepatitis C. Hepatology. 1998;27:1695–9.

    Article  CAS  PubMed  Google Scholar 

  142. Erhardt A, Maschner-Olberg A, Mellenthin C, Kappert G, Adams O, Donner A, et al. HFE mutations and chronic hepatitis C: H63D and C282Y heterozygosity are independent risk factors for liver fibrosis and cirrhosis. J Hepatol. 2003;38:335–42.

    Article  CAS  PubMed  Google Scholar 

  143. Geier A, Reugels M, Weiskirchen R, Wasmuth HE, Dietrich CG, Siewert E, et al. Common heterozygous hemochromatosis gene mutations are risk factors for inflammation and fibrosis in chronic hepatitis C. Liver Int. 2004;24:285–94.

    Article  CAS  PubMed  Google Scholar 

  144. Cal’es P, Lain’e F, Boursier J, et al. Comparison of blood tests for liver fibrosis specific or not to NAFLD. J Hepatol. 2009;50(1):165–73.

    Article  Google Scholar 

  145. Cal’es P, Oberti F, Michalak S, et al. A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology. 2005;42(6):1373–81.

    Article  Google Scholar 

  146. Rosenberg WM, Voelker M, Thiel R, Becka M, Burt A, Schuppan D, Hubscher S, Roskams T. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–13.

    Article  PubMed  Google Scholar 

  147. Valva P, Casciato P, Diaz Carrasco JM, Gadano A, Galdame O, Galoppo MC, et al. The role of serum biomarkers in predicting fibrosis progression in pediatric and adult hepatitis C virus chronic infection. PLoS One. 2011;6:e23218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Valva P, Casciato P, Carol Lezama C, Galoppo M, Gadano A, Galdame O, et al. Serum apoptosis markers related to liver damage in chronic hepatitis c: sfas as a marker of advanced fibrosis in children and adults while m30 of severe steatosis only in children. PLoS One. 2013;8(1):e53519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Patel K, Gordon S, Jacobson I, et al. Evaluation of a panel of noninvasive serum markers to differentiate mild from moderate-to-advanced liver fibrosis in chronic hepatitis C patients. J Hepatol. 2004;41:935–42.

    Article  CAS  PubMed  Google Scholar 

  150. Kelleher TB, Mehta H, Bhaskar R, et al. Prediction of hepatic fibrosis in HIV/HCV coinfected patients using serum fibrosis markers: The SHASTA index. J Hepatol. 2005;43(1):78–84.

    Article  PubMed  Google Scholar 

  151. Rosenberg WM, Voelker M, Thiel R, Becka M, Burt A, Schuppan D, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–13.

    Article  PubMed  Google Scholar 

  152. Guha IN, Parkes J, Roderick P, Chattopadhyay D, Cross R, Harris S, et al. Non-invasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European liver fibrosis panel and exploring simple markers. Hepatology. 2008;47(2):455–60.

    Article  PubMed  Google Scholar 

  153. Toson EA, Shiha GE, Abdelgaleel AE. Fibrogenic/angiogenic linker for non-invasive assessment of hepatic fibrosis staging in chronic hepatitis C among Egyptian patients. Ann Hepatol. 2017;16(6):862–73.

    Article  CAS  PubMed  Google Scholar 

  154. Shiha G, Ibrahim A, Helmy A, Sarin S, Omata M, Kumar A, et al. Asian-Pacific Association for the Study of the Liver (APASL) consensus guidelines on invasive and non-invasive assessment of hepatic fibrosis: a 2016 update. Hepatol Int. 2017;11:1–30.

    Article  PubMed  Google Scholar 

  155. European Association for the Study of the Liver, Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol. 2015;63:237–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Which statement is true?

    1. (a)

      Hepatic stellate cells are the key cell of liver fibrosis

    2. (b)

      Hepatic stellate cells resident in portal tract

    3. (c)

      Hepatic stellate cells transdifferentiate into Kupffer cells

    4. (d)

      Hepatic stellate cells synthetized albumin

  2. 2.

    Which statement/statements is/are true?

    1. (a)

      After chronic liver injury, necrotic cells will be replaced by regenerated parenchymal cells

    2. (b)

      In chronic hepatitis, hepatocytes synthesize laminin

    3. (c)

      Activated hepatic stellate cells transdifferentiate into myofibroblast-like cells

    4. (d)

      Liver fibrosis is not linked with changes in composition of ECM

  3. 3.

    Which statement/statements is/are true as regard biomarkers of liver fibrosis?

    1. (a)

      Associated with morbidity or mortality

    2. (b)

      Biomarkers are more expensive

    3. (c)

      Direct markers are not organ specific, influenced by unrelated sites of inflammation

    4. (d)

      Not sensitive enough to discriminate intermediate stages of fibrosis

    5. (e)

      All of these markers are routinely available in all laboratories

  4. 4.

    Which statement/statements is/are true?

    1. (a)

      ECM homeostasis based on, the well equilibrium between matrix metalloproteinases and inhibitors tissue inhibitors of matrix metalloproteinases

    2. (b)

      The constituents of the ECM are similar in both normal and fibrotic liver

    3. (c)

      Normal liver includes collagens (I, III and IV)

    4. (d)

      The progressive fibrosis are correlated with the marked decrease of tissue inhibitors of matrix metalloproteinases (TIMP1 and 2)

1.2 Answers

  1. 1.

    Which statement is true?

    • a

  2. 2.

    Which statement/statements is/are true?

    • a and c

  3. 3.

    Which statement/statements is/are true as regard biomarkers of liver fibrosis?

    • c and d

  4. 4.

    Which statement/statements is/are true?

    • a

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiha, G., Mousa, N. (2020). Noninvasive Biomarkers for Liver Fibrosis. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics