Skip to main content

Using Gridded Multi-mission Sea Surface Height Data to Estimate Tidal Heights at Columbia River Estuary

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11621))

Included in the following conference series:

Abstract

Measured tidal height time-series are critical for establishing initial and boundary conditions for hydrodynamic models of estuaries. The inexistence of tidal stations in the developing world is more evident than in other parts of the world. The lack of tidal height time-series data oftentimes forces modelers to interpolate or extrapolate these critical data, introducing important uncertainty bounds in the output of hydrodynamic models of estuaries. This paper assesses the feasibility of using gridded multi-mission sea surface height data for estimating tidal heights for the Columbia River estuary located in Northwestern USA. Ocean surface anomaly and geostrophic velocities gridded data, along with historical measured tidal heights are used for training and calibration of the ANN model. A nonlinear autoregressive exogenous neural network is used to predict tidal heights at a 14-min time step. Statistical comparison between measured and predicted data showed that the quality of predicted values was good. Regression analysis for goodness of fit showed the applicability of the proposed method: R2 = 0.93, significance-F = 4.57 * 10−18, F = 370.80, P-value for the intercept = 0.13, standard error = 0.26 m. Overall, the neural network provides good estimations of tidal heights, considering that it uses coarse-spatial-resolution ocean surface and water velocity data with daily temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Provost, C., Lyard, F., Molines, J.M., Genco, M.L., Rabilloud, F.: A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set. J. Geophys. Res. 103, 5513–5529 (2018)

    Google Scholar 

  2. Matsumoto, K., Takanezawa, T., Ooe, M.: Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J. Oceanogr. 56(5), 567–581 (2018). https://doi.org/10.1023/A:1011157212596

    Article  Google Scholar 

  3. Egbert, G.D., Erofeeva, S.: Efficient inverse modelling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002). http://volkov.oce.orst.edu/tides/

    Google Scholar 

  4. Foreman, M.G.G., Thomson, R.E., Smith, C.L.: Seasonal current simulations for the western continental margin of Vancouver Island. J. Geophys. Res. 105(C8), 19665–19698 (2000)

    Google Scholar 

  5. Han, G., Paturi, S., de Young, B., Yi, Y., Shum, C.-K.: A 3-D data-assimilative tidal model of the Northwest Atlantic. Atmos. Ocean 48(1), 39–57 (2010). https://doi.org/10.3137/OC303.2010

    Article  Google Scholar 

  6. Qiang, L., Bing-Dong, Y., Bi-Guang, H.: Calculation and measurement of tide height for the navigation of ship at high tide using artificial neural network. Pol. Marit. Res. 25(s3), 99–110 (2018). https://doi.org/10.2478/pomr-2018-0118

    Article  Google Scholar 

  7. Wang, J., Deng, Z.: Development of a MODIS data-based algorithm for retrieving gage height in nearshore waters along the Louisiana Gulf Coast. J. Coast. Res. 34(1), 220–228 (2018). https://doi.org/10.2112/jcoastres-d-16-00161.1

    Article  Google Scholar 

  8. Anh, N., Prasad, M., Srikanth, N., Sundaram, S.: Wave forecasting using meta-cognitive interval type-2 fuzzy inference system. Procedia Comput. Sci. 144, 33–41 (2018). https://doi.org/10.1016/j.procs.2018.10.502

    Article  Google Scholar 

  9. Kaveh, N.A., Ghaheri, A., Chegini, V., Nazarali, M.: Application of a hybrid approach for tide-surge modeling in the Persian Gulf. J. Coast. Res. 32(5), 1126–1134 (2016). https://doi.org/10.2112/JCOASTRES-D-15-00033.1

    Article  Google Scholar 

  10. López, M., López, I., Iglesias, G.: Hindcasting long waves in a port: an ANN approach. Coast. Eng. J. 57(4), Article no. 1550019 (2015). https://doi.org/10.1142/s0578563415500199

    Google Scholar 

  11. Kim, D.H., Kim, Y.J., Hur, D.S.: Artificial neural network based breakwater damage estimation considering tidal level variation. Ocean Eng. 87, 185–190 (2014). https://doi.org/10.1016/j.oceaneng.2014.06.001

    Article  Google Scholar 

  12. Chen, W.-B., Liu, W.-C., Hsu, M.-H.: Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model. Nat. Hazards Earth Syst. Sci. 12(12), 3799–3809 (2012). https://doi.org/10.5194/nhess-12-3799-2012

    Article  Google Scholar 

  13. Sertel, E., Cigizoglu, H.K., Sanli, D.U.: Estimating daily mean sea level heights using artificial neural networks. J. Coast. Res. 24(3), 727–734 (2008). https://doi.org/10.2112/06-742.1

    Article  Google Scholar 

  14. El-Rabbany, A., El-Diasty, M.: A new approach to sequential tidal prediction. J. Navig. 56(2), 305–314 (2003). https://doi.org/10.1017/S0373463303002285

    Article  Google Scholar 

  15. NASA Jet Propulsion Laboratory: Physical Oceanography Distributed Active Archive Center (PODAAC). NASA EOSDIS PO.DAAC, Pasadena, CA (2015). https://podaac.jpl.nasa.gov/

  16. Boussaada, Z., Curea, O., Ahmed, R., Camblong, H., Najiba, M.B.: A nonlinear autoregressive exogenous (NARX) neural network model for the prediction of the daily direct solar radiation. Energies 11, 620 (2018). https://doi.org/10.3390/en11030620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir J. Alarcon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alarcon, V.J. (2019). Using Gridded Multi-mission Sea Surface Height Data to Estimate Tidal Heights at Columbia River Estuary. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11621. Springer, Cham. https://doi.org/10.1007/978-3-030-24302-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24302-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24301-2

  • Online ISBN: 978-3-030-24302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics