Skip to main content

Abstract

Due to the open and dynamic nature of blockchain systems, the participants (users and miners) have to take into accounts uncertain constraints (e.g., the transaction confirmation times, the delays in the network, and the topology of the network) during their decision-making processes for carefully balancing their objectives. One of these objectives is to operate in a fair environment. This is important since participants may decide to leave the system if they cannot satisfy this objective, which may imply reduced security and sustainability of the system. Yet, existing approaches to modelling fairness are based on formalisms that do not capture the open and complex nature of the blockchain systems. In this paper, we discuss the current status of modelling of fairness based on a high-level description of blockchains and we exploit multi-agent modelling of fairness for users and miners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lightning Network, https://lightning.network, last access on 24 March 2019.

  2. 2.

    Technically the miners can create empty blocks and get block rewards. But this is not the purpose of blockchain systems.

  3. 3.

    Although it is open system and we can expect that participants may come back in the future, once they lose their trust it is harder to expect them to come back.

References

  1. Alzahrani, N., Bulusu, N.: Block-supply chain: a new anti-counterfeiting supply chain using NFC and blockchain. In: Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, CryBlock 2018, pp. 30–35. ACM, New York (2018). https://doi.org/10.1145/3211933.3211939

  2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: EuroSys 2018, Porto, Portugal, April 2018

    Google Scholar 

  3. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv preprint arXiv:1807.04938 (2018)

  4. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability of bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 154–167. ACM (2016)

    Google Scholar 

  5. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_28

    Chapter  Google Scholar 

  6. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  7. Goodman, L.M.: A self-amending crypto-ledger. Tezos white paper (2014)

    Google Scholar 

  8. Gürcan, Ö., Del Pozzo, A., Tucci-Piergiovanni, S.: On the bitcoin limitations to deliver fairness to users. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10573, pp. 589–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69462-7_37

    Chapter  Google Scholar 

  9. Gürcan, Ö., Ranchal Pedrosa, A., Tucci-Piergiovanni, S.: On cancellation of transactions in bitcoin-like blockchains. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229, pp. 516–533. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02610-3_29

    Chapter  Google Scholar 

  10. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM PODC 2018, pp. 245–254. ACM, New York (2018)

    Google Scholar 

  11. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  12. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. IACR Cryptology ePrint Archive 2016, 454 (2016)

    Google Scholar 

  13. Pass, R., Shi, E.: Fruitchains: a fair blockchain. Cryptology ePrint Archive, Report 2016/916 (2016). http://eprint.iacr.org/2016/916.pdf

  14. Pedrosa, A.R., Potop-Butucaru, M., Tucci-Piergiovanni, S.: Scalable lightning factories for bitcoin. In: SAC DADS (2019, to appear)

    Google Scholar 

  15. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd edn. Pearson Education, London (2010)

    MATH  Google Scholar 

  16. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_30

    Chapter  Google Scholar 

  17. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A. (eds.): Self-organising Software - From Natural to Artificial Adaptation. NCS. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17348-6

    Book  MATH  Google Scholar 

  18. Wang, W., et al.: A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE Access 7, 22328–22370 (2019). https://doi.org/10.1109/ACCESS.2019.2896108

    Article  Google Scholar 

  19. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014). http://bitcoinaffiliatelist.com/wp-content/uploads/ethereum.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Önder Gürcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gürcan, Ö. (2019). Multi-Agent Modelling of Fairness for Users and Miners in Blockchains. In: De La Prieta, F., et al. Highlights of Practical Applications of Survivable Agents and Multi-Agent Systems. The PAAMS Collection. PAAMS 2019. Communications in Computer and Information Science, vol 1047. Springer, Cham. https://doi.org/10.1007/978-3-030-24299-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24299-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24298-5

  • Online ISBN: 978-3-030-24299-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics