Skip to main content

Gait Variability and Fall Risk in Older Adults: The Role of Cognitive Function

  • Chapter
  • First Online:
Falls and Cognition in Older Persons

Abstract

In this chapter, we will review the current literature assessing gait variability in older populations at higher risk of falls. Our primary goal is to discuss the role of assessing gait variability to monitor the risk of falls in older adults; the secondary goal is to highlight potential manageable risk factors known to affect gait stability and their relationship with cognition. Stride-to-stride fluctuations in walking are quantified to evaluate gait variability. While a complete understanding of the mechanisms affecting gait variability remains unclear, it is known that gait variability changes during an individual’s life course. High gait variability is considered an index of poor walking stability and has been associated with falls in older adults. Comorbidities, cognitive decline, frailty, fear of falling, cardiovascular problems, and brain pathology are often associated with high gait variability. Recently, it has been also shown that high gait variability is associated with neurodegenerative disorders including the mild cognitive impairment-Alzheimer’s disease spectrum, frontal-temporal dementias, and Parkinson’s disease. Therefore, variability may be viewed as a biomarker of organic integrity, falls risk, and even motor signature in dementia syndromes. Functional and morphological changes in cortical and subcortical brain areas have been correlated with abnormal gait variability in both cognitive healthy and cognitively impaired older adults, and these cerebral changes are also related to fall risk. In summary, this chapter describes putative mechanisms of dysfunctional gait variability in older populations and potential target for future treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions involving energy production for cellular functioning including cholinergic transmission. It has a major role in cognitive functioning.

  2. 2.

    Apolipoprotein E (ApoE) is a class of proteins involved in the metabolism of fats in the body. Individuals expressing the allelic form ε4, particularly women, have up to fourfold higher risk to develop Alzheimer’s disease compared to allelic forms ε1, ε2, and ε3. Individuals with two allele ε4 have 20 times the risk of developing Alzheimer’s disease.

References

  1. Vaughan CL. Theories of bipedal walking: an odyssey. J Biomech. 2003;36:513–23.

    Article  PubMed  Google Scholar 

  2. Hausdorff JM, Ladin Z, Wei JY. Footswitch system for measurement of the temporal parameters of gait. J Biomech [Internet]. 1995;28(3):347–51. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7730393.

    Article  CAS  Google Scholar 

  3. Barrett A, O’Connor M, Culhane K, Finucane AM, Mulkerrin E, Lyons D, et al. Accelerometer versus footswitch evaluation of gait unsteadiness and temporal characteristics of gait in two elderly patient groups. Conf Proc IEEE Eng Med Biol Soc [Internet]. 2009/01/24. 2008;2008:4527–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19163722.

  4. Beijer TR, Lord SR, Brodie MA. Comparison of handheld video camera and GAITRite(R) measurement of gait impairment in people with early stage Parkinson’s disease: a pilot study. J Park Dis [Internet]. 2013/08/14. 2013;3(2):199–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23938349.

  5. Pfister A, West AM, Bronner S, Noah JA. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J Med Eng Technol. 2014;38(5):274–80.

    Article  PubMed  Google Scholar 

  6. Ugbolue UC, Papi E, Kaliarntas KT, Kerr A, Earl L, Pomeroy VM, et al. The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use. Gait Posture. 2013;38(3):483–9.

    Article  PubMed  Google Scholar 

  7. Costa M, Peng C, Lgoldberger A, Hausdorff J. Multiscale entropy analysis of human gait dynamics. Phys A Stat Mech Appl. 2003;330(1–2):53–60.

    Article  Google Scholar 

  8. Hausdorff JM. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos [Internet]. 2009;19(2):26113. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19566273.

  9. Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J. Nonlinear dynamics indicates aging affects variability during gait. Clin Biomech (Bristol, Avon) [Internet]. 2003/05/24. 2003;18(5):435–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12763440.

  10. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol [Internet]. 1996;80(5):1448–57. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8727526.

    Article  CAS  Google Scholar 

  11. Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci [Internet]. 2007;26(4):555–89. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17618701.

    Article  Google Scholar 

  12. Moon Y, Sung JH, An R, Hernandez ME, Sosnoff JJ. Gait variability in people with neurological disorders: a systematic review and meta-analysis. Hum Mov Sci. 2016;47:197–208.

    Article  PubMed  Google Scholar 

  13. Hollman JH, Childs KB, McNeil ML, Mueller AC, Quilter CM, Youdas JW. Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture. 2010;32(1):23–8.

    Article  PubMed  Google Scholar 

  14. Brach J, Berthold R, Craik R, VanSwearingen J, Newman A. Gait variability in community-dwelling older adults. J Am Geriatr Soc. 2001;49(12):1646–50.

    Article  CAS  PubMed  Google Scholar 

  15. Allali G, Launay CP, Blumen HM, Callisaya ML, De Cock AM, Kressig RW, et al. Falls, cognitive impairment, and gait performance: results from the GOOD initiative. J Am Med Dir Assoc. 2017;18(4):335–40.

    Article  PubMed  Google Scholar 

  16. Beauchet O, Allali G, Annweiler C, Bridenbaugh S, Assal F, Kressig RW, et al. Gait variability among healthy adults: low and high stride-to-stride variability are both a reflection of gait stability. Gerontology [Internet]. 2009/08/29. 2009;55(6):702–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19713694.

    Article  PubMed  Google Scholar 

  17. Dhawale AK, Smith MA, Ölveczky BP. The role of variability in motor learning. Annu Rev Neurosci. 2017;40(1):479–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu HG, Miyamoto YR, Gonzalez Castro LN, Olveczky BP, Smith MA. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat Neurosci [Internet]. 2014/01/15. 2014;17(2):312–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24413700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hausdorff JM, Zemany L, Peng C, Goldberger AL. Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol [Internet]. 1999;86(3):1040–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10066721

    Article  CAS  Google Scholar 

  20. Gouelle A, Leroux J, Bredin J, Mégrot F. Changes in gait variability from first steps to adulthood: normative data for the gait variability index. J Mot Behav. 2016;48:249.

    Article  PubMed  Google Scholar 

  21. Poldrack RA, Sabb FW, Foerde K, Tom SM, Asarnow RF, Bookheimer SY, et al. The neural correlates of motor skill automaticity. J Neurosci [Internet]. 2005;25(22):5356–64. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15930384.

    Article  CAS  Google Scholar 

  22. Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013;9:449–61.

    Google Scholar 

  23. Chiron C, Raynaud C, Mazière B, Zilbovicius M, Laflamme L, Masure MC, et al. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33(5):696–703.

    CAS  PubMed  Google Scholar 

  24. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc [Internet]. 2012/11/01. 2012;60(11):2127–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23110433.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hausdorff JM, Edelberg HK, Cudkowicz ME, Singh MA, Wei JY. The relationship between gait changes and falls. J Am Geriatr Soc [Internet]. 1997;45(11):1406. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9361670.

  26. Hollman JH, McDade EM, Petersen RC. Normative spatiotemporal gait parameters in older adults. Gait Posture. 2011;34:111.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oh-Park M, Holtzer R, Xue X, Verghese J. Conventional and robust quantitative gait norms in community-dwelling older adults. J Am Geriatr Soc. 2010;58:1512.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lord SR, Ward JA, Williams P, Anstey KJ. Physiological factors associated with falls in older community-dwelling women. J Am Geriatr Soc [Internet]. 1994/10/01. 1994;42(10):1110–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7930338.

    Article  CAS  PubMed  Google Scholar 

  29. Hausdorff JM, Herman T, Baltadjieva R, Gurevich T, Giladi N. Balance and gait in older adults with systemic hypertension. Am J Cardiol [Internet]. 2003;91(5):643–5. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12615286.

    Article  Google Scholar 

  30. Giladi N, Herman T, Reider II G, Gurevich T, Hausdorff JM. Clinical characteristics of elderly patients with a cautious gait of unknown origin. J Neurol [Internet]. 2005/02/24. 2005;252(3):300–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15726273.

    Article  CAS  PubMed  Google Scholar 

  31. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil [Internet]. 2001;82(8):1050–6. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11494184

    Article  CAS  Google Scholar 

  32. Tinetti ME, Mendes de Leon CF, Doucette JT, Baker DI. Fear of falling and fall-related efficacy in relationship to functioning among community-living elders. J Gerontol [Internet]. 1994/05/01. 1994;49(3):M140–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8169336

    Article  CAS  PubMed  Google Scholar 

  33. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319(26):1701–7.

    Article  CAS  PubMed  Google Scholar 

  34. Florence C, Gwen B, Adam A, Elizabeth B, Judy S, Cynthia D. Medical costs of fatal and nonfatal falls in older adults. J Am Geriatr Soc. 2018;0(0).

    Google Scholar 

  35. Lord SR, Ward JA, Williams P, Anstey KJ. An epidemiological study of falls in older community-dwelling women: the Randwick falls and fractures study. Aust J Public Heal [Internet]. 1993/09/01. 1993;17(3):240–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8286498.

    Article  Google Scholar 

  36. Palvanen M, Kannus P, Parkkari J, Pitkäjärvi T, Pasanen M, Vuori I, et al. The injury mechanisms of osteoporotic upper extremity fractures among older adults: a controlled study of 287 consecutive patients and their 108 controls. Osteoporos Int. 2000;11(10):822–31.

    Article  CAS  PubMed  Google Scholar 

  37. Stevens JA, Olson S. Reducing falls and resulting hip fractures among older women. Home Care Provid [Internet]. 2000/08/10. 2000;5(4):131–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10931397.

  38. Schonnop R, Yang Y, Feldman F, Robinson E, Loughin M, Robinovitch SN. Prevalence of and factors associated with head impact during falls in older adults in long-term care. CMAJ [Internet]. 2013/10/09. 2013;185(17):E803-10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24101612.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rubenstein LZ, Josephson KR. The epidemiology of falls and syncope. Clin Geriatr Med [Internet]. 2002/08/16. 2002;18(2):141–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12180240.

  40. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, et al. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet [Internet]. 2012/10/23. 2013;381(9860):47–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23083889.

    Article  Google Scholar 

  41. Maki BE. Gait changes in older adults: predictors of falls or indicators of fear? J Am Geriatr Soc. 1997;45(3):313–20.

    Article  CAS  PubMed  Google Scholar 

  42. Callisaya ML, Blizzard L, Schmidt MD, Martin KL, Mcginley JL, Sanders LM, et al. Gait, gait variability and the risk of multiple incident falls in older people: a population-based study. Age Ageing. 2011;40(4):481–7.

    Article  PubMed  Google Scholar 

  43. Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci. 2009;64A:896.

    Article  PubMed Central  Google Scholar 

  44. Ijmker T, Lamoth CJ. Gait and cognition: the relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture [Internet]. 2011/10/04. 2012;35(1):126–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21964053.

    Article  Google Scholar 

  45. Kressig RW, Herrmann FR, Grandjean R, Michel J-P, Beauchet O. Gait variability while dual-tasking: fall predictor in older inpatients? Aging Clin Exp Res. 2008;20(2):123–30.

    Article  PubMed  Google Scholar 

  46. Herman T, Giladi N, Gurevich T, Hausdorff JM. Gait instability and fractal dynamics of older adults with a “cautious” gait: why do certain older adults walk fearfully? Gait Posture [Internet]. 2005/01/11. 2005;21(2):178–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15639397.

  47. Ayoubi F, Launay CP, Annweiler C, Beauchet O. Fear of falling and gait variability in older adults: a systematic review and meta-analysis. J Am Med Dir Assoc [Internet]. 2014/09/19. 2015;16(1):14–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25230892.

    Article  PubMed  Google Scholar 

  48. Balash Y, Hadar-Frumer M, Herman T, Peretz C, Giladi N, Hausdorff JM. The effects of reducing fear of falling on locomotion in older adults with a higher level gait disorder. J Neural Transm [Internet]. 2007/06/20. 2007;114(10):1309–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17576513.

    Article  CAS  PubMed  Google Scholar 

  49. Iaboni A, Flint AJ. The complex interplay of depression and falls in older adults: a clinical review. Am J Geriatr Psychiatry [Internet]. 2013/04/11. 2013;21(5):484–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23570891.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pieruccini-Faria F, Muir-Hunter SW, Montero-Odasso M. Do depressive symptoms affect balance in older adults with mild cognitive impairment? Results from the “gait and brain study”. Exp Gerontol. 2018;108:106.

    Article  PubMed  Google Scholar 

  51. McGrath JC. Fear of falling after brain injury. Clin Rehabil. 2008;22(7):635–45.

    Article  Google Scholar 

  52. Johansson J, Nordström A, Nordström P. Greater fall risk in elderly women than in men is associated with increased gait variability during multitasking. J Am Med Dir Assoc. 2016;17(6):535–40.

    Article  PubMed  Google Scholar 

  53. Mirelman A, Herman T, Brozgol M, Dorfman M, Sprecher E, Schweiger A, et al. Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PLoS One [Internet]. 2012/07/07. 2012;7(6):e40297. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22768271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Freire RC, Pieruccini-Faria F, Montero-Odasso M. Are human development index dimensions associated with gait performance in older adults? A systematic review. Exp Gerontol. 2018;102:59–68.

    Article  Google Scholar 

  55. Zecevic AA, Salmoni AW, Speechley M, Vandervoort AA. Defining a fall and reasons for falling: comparisons among the views of seniors, health care providers, and the research literature. Gerontologist. 2006;46:367–76.

    Article  PubMed  Google Scholar 

  56. Uemura K, Yamada M, Nagai K, Ichihashi N. Older adults at high risk of falling need more time for anticipatory postural adjustment in the precrossing phase of obstacle negotiation. J Gerontol A Biol Sci Med Sci. 2011;66A(8):904–9.

    Article  Google Scholar 

  57. Pieruccini-Faria F, Montero-Odasso M. Obstacle negotiation, gait variability and risk of falling. Results from the “Gait and Brain Study”. J Gerontol A Biol Sci Med Sci. 2018. in press.

    Google Scholar 

  58. Pieruccini-Faria F, Sarquis-Adamson Y, Montero-Odasso M. Mild cognitive impairment affects obstacle negotiation in older adults: results from “Gait and Brain Study”. Gerontology. 2018:1–10.

    Google Scholar 

  59. Barkley RA. The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol Rev [Internet]. 2001/06/08. 2001;11(1):1–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11392560.

  60. Ayoubi F, Launay CP, Kabeshova A, Fantino B, Annweiler C, Beauchet O. The influence of fear of falling on gait variability: results from a large elderly population-based cross-sectional study. J Neuroeng Rehabil [Internet]. 2014/08/30. 2014;11:128. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25168467.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Carey BJ, Potter JF. Cardiovascular causes of falls. Age Ageing. 2001;30:19.

    Article  PubMed  Google Scholar 

  62. Tan MP, Kenny RA. Cardiovascular assessment of falls in older people. Clin Interv Aging. 2006;1:57.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bhangu J, King-Kallimanis BL, Donoghue OA, Carroll L, Kenny RA. Falls, non-accidental falls and syncope in community-dwelling adults aged 50 years and older: implications for cardiovascular assessment. PLoS One. 2017;12:e0180997.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Myers SA, Johanning JM, Stergiou N, Celis RI, Robinson L, Pipinos II. Gait variability is altered in patients with peripheral arterial disease. J Vasc Surg. 2009;49:924.

    Article  PubMed  Google Scholar 

  65. Angelousi A, Girerd N, Benetos A, Frimat L, Gautier S, Weryha G, et al. Association between orthostatic hypotension and cardiovascular risk, cerebrovascular risk, cognitive decline and falls as well as overall mortality: a systematic review and meta-analysis. J Hypertens. 2014;32:1562.

    Article  CAS  PubMed  Google Scholar 

  66. Helbostad JL, Leirfall S, Moe-Nilssen R, Sletvold O. Physical fatigue affects gait characteristics in older persons. J Gerontol A Biol Sci Med Sci. 2007;62:1010.

    Article  PubMed  Google Scholar 

  67. Hausdorff JM, Forman DE, Ladin Z, Goldberger AL, Rigney DR, Wei JY. Increased walking variability in elderly persons with congestive heart failure. J Am Geriatr Soc. 1994;42:1056.

    Article  CAS  PubMed  Google Scholar 

  68. Balasubramanian CK, Neptune RR, Kautz SA. Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture. 2009;29:408.

    Article  PubMed  Google Scholar 

  69. Plummer-D’Amato P, Altmann LJP, Saracino D, Fox E, Behrman AL, Marsiske M. Interactions between cognitive tasks and gait after stroke: a dual task study. Gait Posture. 2008;27:683.

    Article  PubMed  Google Scholar 

  70. Chisholm AE, Makepeace S, Inness EL, Perry SD, McIlroy WE, Mansfield A. Spatial-temporal gait variability poststroke: variations in measurement and implications for measuring change. Arch Phys Med Rehabil. 2014;95:1335.

    Article  PubMed  Google Scholar 

  71. Roman De Mettelinge T, Delbaere K, Calders P, Gysel T, Van Den Noortgate N, Cambier D. The impact of peripheral neuropathy and cognitive decrements on gait in older adults with type 2 diabetes mellitus. Arch Phys Med Rehabil. 2013;94:1074.

    Article  PubMed  Google Scholar 

  72. Thies SB, Richardson JK, DeMott T, Ashton-Miller JA. Influence of an irregular surface and low light on the step variability of patients with peripheral neuropathy during level gait. Gait Posture. 2005;22(1):40–5.

    Article  PubMed  Google Scholar 

  73. Richardson JK, Thies SB, DeMott TK, Ashton-Miller JA. Interventions improve gait regularity in patients with peripheral neuropathy while walking on an irregular surface under low light. J Am Geriatr Soc. 2004;52(4):510–5.

    Article  PubMed  Google Scholar 

  74. Richardson JK, Thies S, Ashton-Miller JA. An exploration of step time variability on smooth and irregular surfaces in older persons with neuropathy. Clin Biomech. 2008;23(3):349–56.

    Article  Google Scholar 

  75. Richardson JK, Thies SB, TK DM, Ashton-Miller JA. A comparison of gait characteristics between older women with and without peripheral neuropathy in standard and challenging environments. J Am Geriatr Soc. 2004;52:1532.

    Article  PubMed  Google Scholar 

  76. DeMott TK, Richardson JK, Thies SB, Ashton-Miller JA. Falls and gait characteristics among older persons with peripheral neuropathy. Am J Phys Med Rehabil. 2007;86(2):125–32.

    Article  PubMed  Google Scholar 

  77. Redfern MS, Jennings JR, Martin C, Furman JM. Attention influences sensory integration for postural control in older adults. Gait Posture [Internet]. 2001/10/16. 2001;14(3):211–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11600324.

    Article  CAS  Google Scholar 

  78. Redfern MS, Talkowski ME, Jennings JR, Furman JM. Cognitive influences in postural control of patients with unilateral vestibular loss. Gait Posture [Internet]. 2004/03/12. 2004;19(2):105–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15013498.

    Article  Google Scholar 

  79. Wuehr M, Schniepp R, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Sensory loss and walking speed related factors for gait alterations in patients with peripheral neuropathy. Gait Posture. 2014;39:852.

    Article  PubMed  Google Scholar 

  80. Beekman ATF, Copeland JRM, Prince MJ. Review of community prevalence of depression in later life. Br J Psychiatry. 1999;174:307.

    Article  CAS  PubMed  Google Scholar 

  81. Sachdev P, Aniss AM. Slowness of movement in melancholic depression. Biol Psychiatry [Internet]. 1994/02/15. 1994;35(4):253–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8186330.

    Article  CAS  PubMed  Google Scholar 

  82. Michalak J, Troje NF, Fischer J, Vollmar P, Heidenreich T, Schulte D. Embodiment of sadness and depression--gait patterns associated with dysphoric mood. Psychosom Med [Internet]. 2009/05/06. 2009;71(5):580–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19414617.

    Article  PubMed  Google Scholar 

  83. Whooley MA, Kip KE, Cauley JA, Ensrud KE, Nevitt MC, Browner WS. Depression, falls, and risk of fracture in older women. Study of Osteoporotic Fractures Research Group. Arch Intern Med [Internet]. 1999/03/13. 1999;159(5):484–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10074957.

  84. Wei TS, Liu PT, Chang LW, Liu SY. Gait asymmetry, ankle spasticity, and depression as independent predictors of falls in ambulatory stroke patients. PLoS One [Internet]. 2017/05/26. 2017;12(5):e0177136. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28542281.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Turcu A, Toubin S, Mourey F, D’Athis P, Manckoundia P, Pfitzenmeyer P. Falls and depression in older people. Gerontology [Internet]. 2004/08/28. 2004;50(5):303–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15331859.

  86. Radovanovic S, Jovicic M, Maric NP, Kostic V. Gait characteristics in patients with major depression performing cognitive and motor tasks while walking. Psychiatry Res [Internet]. 2014/03/13. 2014;217(1–2):39–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24613201.

    Article  PubMed  Google Scholar 

  87. Gabel NM, Crane NA, Avery ET, Kay RE, Laurent A, Giordani B, et al. Dual-tasking gait variability and cognition in late-life depression. Int J Geriatr Psychiatry [Internet]. 2015/08/08. 2015;30(11):1120–8. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/26251013.

    Article  PubMed  Google Scholar 

  88. Brandler TC, Wang C, Oh-Park M, Holtzer R, Verghese J. Depressive symptoms and gait dysfunction in the elderly. Am J Geriatr Psychiatry [Internet]. 2011/03/23. 2012;20(5):425–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21422907.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hausdorff JM, Peng CK, Goldberger AL, Stoll AL. Gait unsteadiness and fall risk in two affective disorders: a preliminary study. BMC Psychiatry [Internet]. 2004;4:39. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15563372.

  90. Martin KL, Blizzard L, Wood AG, Srikanth V, Thomson R, Sanders LM, et al. Cognitive function, gait, and gait variability in older people: a population-based study. J Gerontol A Biol Sci Med Sci. 2013;

    Google Scholar 

  91. van Iersel MB, Kessels RPC, Bloem BR, Verbeek ALM, Olde Rikkert MGM. Executive functions are associated with gait and balance in community-living elderly people. J Gerontol A Biol Sci Med Sci. 2008;63(12):1344.

    Article  PubMed  Google Scholar 

  92. IJmker T, Lamoth CJC. Gait and cognition: the relationship between gait stability and variability with executive function in persons with and without dementia. Gait Posture. 2012;35(1):126–30.

    Article  PubMed  Google Scholar 

  93. Herman T, Mirelman A, Giladi N, Schweiger A, Hausdorff JM. Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci [Internet]. 2010/05/21. 2010;65(10):1086–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20484336.

    Article  Google Scholar 

  94. Graveson J, Bauermeister S, McKeown D, Bunce D. Intraindividual reaction time variability, falls, and gait in old age: a systematic review. J Gerontol B Psychol Sci Soc Sci. 2016;71:857–64.

    Article  Google Scholar 

  95. Sukits AL, Nebes RD, Chambers AJ, Ledgerwood A, Halligan EM, Perera S, et al. Intra-individual variability in gait and in cognitive performance are not related in the elderly. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2014;21(3):283–95.

    Article  PubMed  Google Scholar 

  96. Muir SW, Gopaul K, Montero Odasso MM. The role of cognitive impairment in fall risk among older adults: a systematic review and meta-analysis. Age Ageing [Internet]. 2012/03/01. 2012;41(3):299–308. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22374645.

    Article  PubMed  Google Scholar 

  97. Maidan I, Eyal S, Kurz I, Geffen N, Gazit E, Ravid L, et al. Age-associated changes in obstacle negotiation strategies: does size and timing matter? Gait Posture. 2018;59:242–7.

    Article  CAS  PubMed  Google Scholar 

  98. Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet. 2016;388(10050):1170–82.

    Article  PubMed  Google Scholar 

  99. Mirelman A, Maidan I, Bernad-Elazari H, Shustack S, Giladi N, Hausdorff JM. Effects of aging on prefrontal brain activation during challenging walking conditions. Brain Cogn. 2017;115:41–6.

    Article  PubMed  Google Scholar 

  100. Allali G, Assal F, Kressig RW, Dubost V, Herrmann FR, Beauchet O. Impact of impaired executive function on gait stability. Dement Geriatr Cogn Disord. 2008;26(4):364–9.

    Article  PubMed  Google Scholar 

  101. Montero-Odasso M, Oteng-Amoako A, Speechley M, Gopaul K, Beauchet O, Annweiler C, et al. The motor signature of mild cognitive impairment: results from the gait and brain study. J Gerontol A Biol Sci Med Sci [Internet]. 2014/09/04. 2014;69(11):1415–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25182601.

    Article  PubMed Central  Google Scholar 

  102. Tyrovolas S, Koyanagi A, Lara E, Ivan Santini Z, Haro JM. Mild cognitive impairment is associated with falls among older adults: Findings from the Irish Longitudinal Study on Ageing (TILDA). Exp Gerontol [Internet]. 2015/12/29. 2015;75:42–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26707711.

  103. Delbaere K, Kochan NA, Close JCT, Menant JC, Sturnieks DL, Brodaty H, et al. Mild cognitive impairment as a predictor of falls in community-dwelling older people. Am J Geriatr Psychiatry. 2012;20(10):845–53.

    Article  PubMed  Google Scholar 

  104. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med [Internet]. 2011/06/10. 2011;364(23):2227–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21651394.

    Article  CAS  PubMed  Google Scholar 

  105. Verghese J, Robbins M, Holtzer R, Zimmerman M, Wang C, Xue X, et al. Gait dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc. 2008;56:1244.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hausdorff JM, Yogev G, Springer S, Simon ES, Giladi N. Walking is more like catching than tapping: gait in the elderly as a complex cognitive task. Exp Brain Res [Internet]. 2005;164(4):541–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15864565.

    Article  Google Scholar 

  107. Savica R, Wennberg AMV, Hagen C, Edwards K, Roberts RO, Hollman JH, et al. Comparison of gait parameters for predicting cognitive decline: the Mayo Clinic study of aging. J Alzheimers Dis. 2017;55:559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martin K, Thomson R, Blizzard L, Wood A, Garry M, Srikanth V. Visuospatial ability and memory are associated with falls risk in older people. Dement Geriatr Cogn Disord. 2009;27(5):451–7.

    Article  CAS  PubMed  Google Scholar 

  109. van Schoor NM, Smit JH, Pluijm SM, Jonker C, Lips P. Different cognitive functions in relation to falls among older persons. Immediate memory as an independent risk factor for falls. J Clin Epidemiol. 2002;55(9):855–62.

    Article  PubMed  Google Scholar 

  110. Trujillo AJ, Hyder AA, Steinhardt LC. Cognitive functioning and the probability of falls among seniors in Havana, Cuba. Int J Aging Hum Dev. 2011;73(2):175–94.

    Article  PubMed  Google Scholar 

  111. Holtzer R, Friedman R, Lipton RB, Katz M, Xue X, Vergese J. The relationship between specific cognitive functions and falls in aging. Neuropsychology. 2012;21(5):540–8.

    Article  Google Scholar 

  112. Sheridan PL, Solomont J, Kowall N, Hausdorff JM. Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer’s disease. J Am Geriatr Soc [Internet]. 2003;51(11):1633–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14687395.

    Article  Google Scholar 

  113. Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord [Internet]. 1998;13(3):428–37. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9613733.

    Article  CAS  Google Scholar 

  114. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019–31.

    Article  PubMed  Google Scholar 

  115. Ben-Shlomo Y, Sieradzan K. Idiopathic Parkinson’s disease: epidemiology, diagnosis and management. Br J Gen Pr [Internet]. 1995/05/01. 1995;45(394):261–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7619574.

  116. Fargo K. Alzheimer’s Association report: 2014 Alzheimers disease facts and figures. Alzheimers Dement. 2014;10(2):e47.

    Article  Google Scholar 

  117. Nakamura T, Meguro K, Sasaki H. Relationship between falls and stride length variability in senile dementia of the alzheimer type. Gerontology. 1996;42(2):108–13.

    Article  CAS  PubMed  Google Scholar 

  118. Annweiler C, Beauchet O, Celle S, Roche F, Annweiler T, Allali G, et al. Contribution of brain imaging to the understanding of gait disorders in Alzheimer’s disease: a systematic review. Am J Alzheimers Dis Other Demen [Internet]. 2012/08/30. 2012;27(6):371–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22930697.

    Article  Google Scholar 

  119. Montero-Odasso M, Muir-Hunter SW, Oteng-Amoako A, Gopaul K, Islam A, Borrie M, et al. Donepezil improves gait performance in older adults with mild Alzheimer’s disease: a phase II clinical trial. J Alzheimers Dis [Internet]. 2014/08/01. 2015;43(1):193–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25079803.

    Article  CAS  Google Scholar 

  120. Muir SW, Speechley M, Wells J, Borrie M, Gopaul K, Montero-Odasso M. Gait assessment in mild cognitive impairment and Alzheimer’s disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture [Internet]. 2011/09/24. 2012;35(1):96–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21940172.

    Article  Google Scholar 

  121. Muir SW, Gopaul K, Montero Odasso MM. The role of cognitive impairment in fall risk among older adults: a systematic review and meta-analysis. Age Ageing. 2012;41:299–308.

    Article  PubMed  Google Scholar 

  122. Montero-Odasso M, Muir SW, Speechley M. Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch Phys Med Rehabil [Internet]. 2012/02/01. 2012;93(2):293–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22289240.

    Article  PubMed  Google Scholar 

  123. van Iersel MB, Verbeek ALM, Bloem BR, Munneke M, Esselink RA, Rikkert MGMO. Frail elderly patients with dementia go too fast. J Neurol Neurosurg Psychiatry. 2006;77(7):874–6.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Montero-Odasso M, Muir SW, Hall M, Doherty TJ, Kloseck M, Beauchet O, et al. Gait variability is associated with frailty in community-dwelling older adults. J Gerontol A Biol Sci Med Sci [Internet]. 2011/03/02. 2011;66(5):568–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21357190.

    Article  Google Scholar 

  125. Montero-Odasso M, Casas A, Hansen KT, Bilski P, Gutmanis I, Wells JL, et al. Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study. J Neuroeng Rehabil [Internet]. 2009/09/24. 2009;6:35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19772593.

  126. Bang J, Spina S, Miller BL. Non-Alzheimer’s dementia 1: Frontotemporal dementia. Lancet. 2015;386:1672.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cardoso F, Hodges J, Evans AH, Revesz T, Williams DR. Postural instability, frontotemporal dementia, and ophthalmoplegia: Clinicopathological case. Mov Disord. 2011;26:1808.

    Article  PubMed  Google Scholar 

  128. Allali G, Dubois B, Assal F, Lallart E, De Souza LC, Bertoux M, et al. Frontotemporal dementia: pathology of gait? Mov Disord. 2010;25:731.

    Article  PubMed  Google Scholar 

  129. Morris ME, Iansek R, Matyas TA, Summers JJ. The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain [Internet]. 1994;117 ( Pt 5:1169–81. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7953597.

  130. Barbieri FA, Rinaldi NM, Santos PC, Lirani-Silva E, Vitorio R, Teixeira-Arroyo C, et al. Functional capacity of Brazilian patients with Parkinson’s disease (PD): relationship between clinical characteristics and disease severity. Arch Gerontol Geriatr [Internet]. 2011/10/04. 2012;54(2):e83-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21963176.

  131. Horak FB, Dimitrova D, Nutt JG. Direction-specific postural instability in subjects with Parkinson’s disease. Exp Neurol [Internet]. 2005/05/05. 2005;193(2):504–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15869953.

    Article  PubMed  Google Scholar 

  132. Montero-Odasso MM, Sarquis-Adamson Y, Speechley M, Borrie MJ, Hachinski VC, Wells J, et al. Association of dual-task gait with incident dementia in mild cognitive impairment: results from the gait and brain study. JAMA Neurol. 2017;74(7):857–65.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Galna B, Lord S, Burn DJ, Rochester L. Progression of gait dysfunction in incident Parkinson’s disease: impact of medication and phenotype. Mov Disord. 2015;30(3):359–67.

    Article  CAS  PubMed  Google Scholar 

  134. König N, Singh NB, Baumann CR, Taylor WR. Can gait signatures provide quantitative measures for aiding clinical decision-making? A systematic meta-analysis of gait variability behavior in patients with Parkinson’s disease. Front Hum Neurosci. 2016;10:319.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Herman T, Weiss A, Brozgol M, Giladi N, Hausdorff JM. Gait and balance in Parkinson’s disease subtypes: objective measures and classification considerations. J Neurol. 2014;261(12):2401.

    Article  PubMed  Google Scholar 

  136. Kawada T. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology. 2015;84:1285.

    Article  PubMed  Google Scholar 

  137. Wu T, Hallett M. A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain [Internet]. 2005/06/17. 2005;128(Pt 10):2250–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15958505.

    Article  PubMed  Google Scholar 

  138. Bryant MS, Rintala DH, Hou JG, Collins RL, Protas EJ. Gait variability in Parkinson’s disease: Levodopa and walking direction. Acta Neurol Scand. 2016;134:83–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  139. Bryant MS, Rintala DH, Hou JG, Lai EC, Protas EJ. Effects of levodopa on forward and backward gait patterns in persons with Parkinson’s disease. NeuroRehabilitation. 2011;29(3):247–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schaafsma JD, Giladi N, Balash Y, Bartels AL, Gurevich T, Hausdorff JM. Gait dynamics in Parkinson’s disease: relationship to Parkinsonian features, falls and response to levodopa. J Neurol Sci. 2003;212(1–2):47–53.

    Article  PubMed  Google Scholar 

  141. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of Gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19:871–84.

    Article  PubMed  Google Scholar 

  142. Schaafsma JD, Balash Y, Gurevich T, Bartels AL, Hausdorff JM, Giladi N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J Neurol [Internet]. 2003;10(4):391–8. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12823491.

    Article  CAS  Google Scholar 

  143. Pieruccini-Faria F, Ehgoetz Martens KA, Silveira CR, Jones JA, Almeida QJ. Side of basal ganglia degeneration influences freezing of gait in Parkinson’s disease. Behav Neurosci [Internet]. 2015/03/03. 2015;129(2):214–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25730121.

    Article  PubMed  Google Scholar 

  144. Hausdorff JM, Schaafsma JD, Balash Y, Bartels AL, Gurevich T, Giladi N. Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp Brain Res [Internet]. 2003/03/01. 2003;149(2):187–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12610686.

    Article  CAS  PubMed  Google Scholar 

  145. Shah J, Pillai L, Williams DK, Doerhoff SM, Larson-Prior L, Garcia-Rill E, et al. Increased foot strike variability in Parkinson’s disease patients with freezing of gait. Parkinsonism Relat Disord. 2018;53:58.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pieruccini-Faria F, Jones JA, Almeida QJ. Motor planning in Parkinson’s disease patients experiencing freezing of gait: the influence of cognitive load when approaching obstacles. Brain Cogn [Internet]. 2014/04/15. 2014;87:76–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24727559.

    Article  PubMed  Google Scholar 

  147. Almeida QJ, Lebold CA. Freezing of gait in parkinson’s disease: a perceptual cause for a motor impairment? J Neurol Neurosurg Psychiatry [Internet]. 2009; Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19758982.

  148. Pieruccini-Faria F, Vitorio R, Almeida QJ, Silveira CR, Caetano MJ, Stella F, et al. Evaluating the acute contributions of dopaminergic replacement to gait with obstacles in Parkinson’s disease. J Mot Behav [Internet]. 2013/07/10. 2013;45(5):369–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23834709.

    Article  CAS  PubMed  Google Scholar 

  149. Pieruccini-Faria F, Jones JA, Almeida QJ. Insight into dopamine-dependent planning deficits in Parkinson’s disease: a sharing of cognitive & sensory resources. Neuroscience [Internet]. 2016/01/23. 2016;318:219–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26794593.

  150. Nieuwboer A, Dom R, De Weerdt W, Desloovere K, Janssens L, Stijn V. Electromyographic profiles of gait prior to onset of freezing episodes in patients with Parkinson’s disease. Brain [Internet]. 2004/05/07. 2004;127(Pt 7):1650–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15128621.

    Article  PubMed  Google Scholar 

  151. Silveira CRA, Ehgoetz Martens KA, Pieruccini-Faria F, Bell-Boucher D, Roy EA, Almeida QJ. Disentangling perceptual judgment and online feedback deficits in Parkinson’s freezing of gait. J Neurol. 2015;262(7):1629–36.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bhatt H, Pieruccini-Faria F, Almeida QJ. Dynamics of turning sharpness influences freezing of gait in Parkinson’s disease. Park Relat Disord [Internet]. 2012/10/23. 2013;19(2):181–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23083513.

    Article  Google Scholar 

  153. Maidan I, Bernad-Elazari H, Gazit E, Giladi N, Hausdorff JM, Mirelman A. Changes in oxygenated hemoglobin link freezing of gait to frontal activation in patients with Parkinson disease: an fNIRS study of transient motor-cognitive failures. J Neurol [Internet]. 2015/02/01. 2015; Available from: http://www.ncbi.nlm.nih.gov/pubmed/25636682.

  154. Maidan I, Bernad-Elazari H, Gazit E, Mirelman A, Hausdorff J, Giladi N. Increased activation of the frontal lobe is associated with freezing of gait in patients with Parkinson’s disease: an fNIRS study (P6.074). Neurology. 2015;84(14 Supplement):P6.074.

    Google Scholar 

  155. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol [Internet]. 2011/07/23. 2011;10(8):734–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21777828.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Barbe MT, Amarell M, Snijders AH. Gait and upper limb variability in Parkinson’ s disease patients with and without freezing of gait. J Neurol. 2014;261(2):330–42.

    Article  PubMed  Google Scholar 

  157. Curtze C, Nutt JG, Carlson-Kuhta P, Mancini M, Horak FB. Levodopa is a Double-Edged Sword for balance and gait in people with Parkinson’s disease. Mov Disord [Internet]. 2015/06/23. 2015;30(10):1361–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26095928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res [Internet]. 2010/01/12. 2011;221(2):564–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20060022.

    Article  CAS  PubMed  Google Scholar 

  159. Bohnen NI, Muller ML, Koeppe RA, Studenski SA, Kilbourn MA, Frey KA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology [Internet]. 2009/11/18. 2009;73(20):1670–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19917989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Scott PJ, et al. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology [Internet]. 2013/10/01. 2013;81(18):1611–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24078735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rochester L, Yarnall AJ, Baker MR, David R V, Lord S, Galna B, et al. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s disease. Brain [Internet]. 2012/09/11. 2012;135(Pt 9):2779–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22961550.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Lord S, Baker K, Nieuwboer A, Burn D, Rochester L. Gait variability in Parkinson’s disease: an indicator of non-dopaminergic contributors to gait dysfunction? J Neurol [Internet]. 2010/11/06. 2011;258(4):566–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21052710.

    Article  PubMed  Google Scholar 

  163. Ehgoetz Martens KA, Hall JM, Georgiades MJ, Gilat M, Walton CC, Matar E, et al. The functional network signature of heterogeneity in freezing of gait. Brain. 2018;141:1145.

    Article  PubMed  Google Scholar 

  164. Gilat M, Shine JM, Bolitho SJ, Matar E, Kamsma YP, Naismith SL, et al. Variability of Stepping during a Virtual Reality Paradigm in Parkinson’s Disease Patients with and without Freezing of Gait. PLoS One [Internet]. 2013/06/28. 2013;8(6):e66718. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23805270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shine JM, Matar E, Ward PB, Bolitho SJ, Gilat M, Pearson M, et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease. Brain [Internet]. 2013/03/15. 2013;136(Pt 4):1204–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23485851.

    Article  PubMed  Google Scholar 

  166. Ehgoetz Martens KA, Pieruccini-Faria F, Silveira CR, Almeida QJ. The contribution of optic flow to freezing of gait in left- and right-PD: different mechanisms for a common phenomenon? Park Relat Disord [Internet]. 2013/07/31. 2013;19(11):1046–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23891343.

    Article  Google Scholar 

  167. Vercruysse S, Devos H, Munks L, Spildooren J, Vandenbossche J, Vandenberghe W, et al. Explaining freezing of gait in Parkinson’s disease: motor and cognitive determinants. Mov Disord [Internet]. 2012/11/02. 2012;27(13):1644–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23115014.

    Article  PubMed  Google Scholar 

  168. Ehgoetz Martens KA, Pieruccini-Faria F, Almeida QJ. Could sensory mechanisms be a core factor that underlies freezing of gait in Parkinson’s disease? PLoS One [Internet]. 2013/05/15. 2013;8(5):e62602. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23667499.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  169. Belghali M, Chastan N, Davenne D, Decker LM. Improving dual-task walking paradigms to detect prodromal Parkinson’s and Alzheimer’s diseases. Front Neurol. 2017;8:207.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dagan M, Herman T, Harrison R, Zhou J, Giladi N, Ruffini G, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov Disord. 2018;33:642.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord [Internet]. 2013/10/18. 2013;28(11):1483–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24132836.

    Article  PubMed  Google Scholar 

  172. Takakusaki K, Oohinata-Sugimoto J, Saitoh K, Habaguchi T. Role of basal ganglia-brainstem systems in the control of postural muscle tone and locomotion. Prog Brain Res [Internet]. 2003/12/05. 2004;143:231–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14653168.

  173. Tian Q, Chastan N, Bair WN, Resnick SM, Ferrucci L, Studenski SA. The brain map of gait variability in aging, cognitive impairment and dementia—a systematic review. Neurosci Biobehav Rev. 2017;74:149–62.

    Article  Google Scholar 

  174. Annweiler C, Montero-Odasso M, Bartha R, Drozd J, Hachinski V, Beauchet O. Association between gait variability and brain ventricle attributes: a brain mapping study. Exp Gerontol [Internet]. 2014/06/28. 2014;57:256–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24971908.

    Article  PubMed  Google Scholar 

  175. Annweiler C, Beauchet O, Bartha R, Wells JL, Borrie MJ, Hachinski V, et al. Motor cortex and gait in mild cognitive impairment: a magnetic resonance spectroscopy and volumetric imaging study. Brain [Internet]. 2013/02/26. 2013;136(Pt 3):859–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23436505.

    Article  PubMed  Google Scholar 

  176. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Google Scholar 

  177. Lo O-Y, Halko MA, Zhou J, Harrison R, Lipsitz LA, Manor B. Gait speed and gait variability are associated with different functional brain networks. Front Aging Neurosci. 2017;9

    Google Scholar 

  178. Verghese J, Wang C, Ayers E, Izzetoglu M, Holtzer R. Brain activation in high-functioning older adults and falls: prospective cohort study. Neurology. 2017;88(2):191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Maidan I, Shustak S, Sharon T, Bernad-Elazari H, Geffen N, Giladi N, et al. Prefrontal cortex activation during obstacle negotiation: what’s the effect size and timing? Brain Cogn. 2018;

    Google Scholar 

  180. Nieuwhof F, Reelick M, Rikkert MO, Mirelman A, Hausdorff J, Claassen J. Wireless fNIRS for neuroimaging during dual task walking and obstacle negotiation in the elderly: feasible, reliable and valid? Eur Geriatr Med. 2012;3:54.

    Article  Google Scholar 

  181. Maidan I, Bernad-Elazari H, Giladi N, Hausdorff JM, Mirelman A. When is higher level cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain Topogr. 2017;30(4):531–8.

    Article  PubMed  Google Scholar 

  182. Verghese J, Holtzer R, Wang C, Katz MJ, Barzilai N, Lipton RB. Role of APOE genotype in gait decline and disability in aging. J Gerontol A Biol Sci Med Sci. 2013;68(11):1395–401.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sakurai R, Montero-Odasso M. Apolipoprotein E4 Allele and Gait performance in mild cognitive impairment: results from the Gait and Brain Study. J Gerontol A Biol Sci Med Sci. 2017;72(12):1676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mirelman A, Gurevich T, Giladi N, Bar-Shira A, Orr-Urtreger A, Hausdorff JM. Gait alterations in healthy carriers of the LRRK2 G2019S mutation. Ann Neurol. 2011;69(1):193–7.

    Article  PubMed  Google Scholar 

  185. Allali G, van der Meulen M, Beauchet O, Rieger SW, Vuilleumier P, Assal F. The neural basis of age-related changes in motor imagery of gait: an fMRI study. J Gerontol A Biol Sci Med Sci [Internet]. 2013/12/26. 2014;69(11):1389–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24368777.

    Article  Google Scholar 

  186. Hausdorff JM, Nelson ME, Kaliton D, Layne JE, Bernstein MJ, Nuernberger A, et al. Etiology and modification of gait instability in older adults: a randomized controlled trial of exercise. J Appl Physiol [Internet]. 2001;90(6):2117–29. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11356774.

    Article  CAS  Google Scholar 

  187. Wayne PM, Hausdorff JM, Lough M, Gow BJ, Lipsitz L, Novak V, et al. Tai Chi training may reduce dual task gait variability, a potential mediator of fall risk, in healthy older adults: cross-sectional and randomized trial studies. Front Hum Neurosci. 2015;9:332.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wang R-Y, Wang Y-L, Cheng F-Y, Chao Y-H, Chen C-L, Yang Y-R. Effects of combined exercise on gait variability in community-dwelling older adults. Age (Dordr). 2015;37(3):9780.

    Google Scholar 

  189. Gardner MM, Robertson MC, Campbell AJ. Exercise in preventing falls and fall related injuries in older people: a review of randomised controlled trials. Br J Sports Med. 2000;34(1):7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Dean CM, Rissel C, Sherrington C, Sharkey M, Cumming RG, Lord SR, et al. Exercise to enhance mobility and prevent falls after stroke: the community stroke club randomized trial. Neurorehabil Neural Repair. 2012;26(9):1046–57.

    Article  PubMed  Google Scholar 

  191. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30.

    Article  PubMed  Google Scholar 

  192. Yogev-Seligmann G, Giladi N, Brozgol M, Hausdorff JM. A training program to improve gait while dual tasking in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil. 2012;93(1):176–81.

    Article  PubMed  Google Scholar 

  193. Beauchet O, Launay C, Annweiler C, Fantino B, Allali G, De Decker L. Physical training-related changes in gait variability while single and dual tasking in older adults: magnitude of gait variability at baseline matters. Eur J Phys Rehabil Med. 2013;49(6):857–64.

    CAS  PubMed  Google Scholar 

  194. Steinmetz JP, Federspiel C. The effects of cognitive training on gait speed and stride variability in old adults: findings from a pilot study. Aging Clin Exp Res. 2014;26(6):635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Frenkel-Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson’s disease. Mov Disord [Internet]. 2005;20(9):1109–14. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15929090.

    Article  Google Scholar 

  196. Beck EN, Intzandt BN, Almeida QJ. Can dual task walking improve in Parkinson’s disease after external focus of attention exercise? A single blind randomized controlled trial. Neurorehabil Neural Repair. 2017; https://doi.org/10.1177/154596831774678.

  197. Intzandt B, Beck EN, Silveira CRA. The effects of exercise on cognition and Gait in Parkinson’s disease: a scoping review. Neurosci Biobehav Rev. 2018;95:136.

    Article  PubMed  Google Scholar 

  198. Dagan M, Herman T, Mirelman A, Giladi N, Hausdorff JM. The role of the prefrontal cortex in freezing of gait in Parkinson’s disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res. 2017;235(8):2463–72.

    Article  PubMed  Google Scholar 

  199. Auriel E, Hausdorff JM, Herman T, Simon ES, Giladi N. Effects of methylphenidate on cognitive function and gait in patients with Parkinson’s disease: a pilot study. Clin Neuropharmacol [Internet]. 2006;29(1):15–7. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16518128.

    Article  CAS  Google Scholar 

  200. Beauchet O, Launay CP, Montero-Odasso M, Annweiler C, Allali G. Anti-dementia drugs-related changes in gait performance while single and dual tasking in patients with Alzheimer disease: a meta-analysis. Curr Alzheimer Res [Internet]. 2015/07/15. 2015;12(8):761–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26159199.

    Article  CAS  PubMed  Google Scholar 

  201. Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Close JCT, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016.

    Google Scholar 

  202. Beauchet O, Annweiler C, Verghese J, Fantino B, Herrmann FR, Allali G. Biology of gait control: vitamin D involvement. Neurology [Internet]. 2011/04/08. 2011;76(19):1617–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21471466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Annweiler C, Montero-Odasso M, Llewellyn DJ, Richard-Devantoy S, Duque G, Beauchet O. Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis [Internet]. 2013/08/21. 2013;37(1):147–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23948884.

    Article  CAS  PubMed  Google Scholar 

  204. Uusi-Rasi K, Patil R, Karinkanta S, Kannus P, Tokola K, Lamberg-Allardt C, et al. A 2-year follow-up after a 2-year RCT with vitamin D and exercise: effects on falls, injurious falls and physical functioning among older women. J Gerontol A Biol Sci Med Sci. 2017;72(9):1239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu-Ambrose T, Donaldson MG. Exercise and cognition in older adults: is there a role for resistance training programmes? Br J Sports Med. 2009;43:25–7.

    Article  PubMed  Google Scholar 

  206. Liu-Ambrose T. Resistance training and executive functions. Arch Intern Med. 2010;170(2):170.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Silveira CRA, Roy EA, Intzandt BN, Almeida QJ. Aerobic exercise is more effective than goal-based exercise for the treatment of cognition in Parkinson’s disease. Brain Cogn. 2018;122:1–8.

    Article  PubMed  Google Scholar 

  208. Tanaka K, de Quadros AC, Santos RF, Stella F, Gobbi LTB, Gobbi S. Benefits of physical exercise on executive functions in older people with Parkinson’s disease. Brain Cogn. 2009;69(2):435–41.

    Article  PubMed  Google Scholar 

  209. Silveira CRA, Roy EA, Almeida QJ. Acute effects of aerobic exercise on cognitive function in individuals with Parkinson’s disease. Neurosci Lett. 2018;671:60–5.

    Article  CAS  PubMed  Google Scholar 

  210. Montero-Odasso M. Falls as a geriatric syndrome: how to prevent them? How to treat them? In: Osteoporosis in older persons; 2009. p. 110–25.

    Chapter  Google Scholar 

  211. Montero-Odasso M, Speechley M. Falls in cognitively impaired older adults: implications for risk assessment and prevention. J Am Geriatr Soc. 2018;66(2):367–75.

    Article  PubMed  Google Scholar 

  212. Morley JE. Does vitamin D modulate cognition? Nat Rev Neurol. 2014;10:613.

    Article  PubMed  Google Scholar 

  213. Latimer CS, Brewer LD, Searcy JL, Chen K-C, Popović J, Kraner SD, et al. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats, Proc Natl Acad Sci U S A. 2014;111:E4359.

    Article  CAS  Google Scholar 

  214. Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc [Internet]. 2011/12/23. 2011;59(12):2291–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22188076.

    Article  PubMed  Google Scholar 

  215. Bamidis PD, Vivas AB, Styliadis C, Frantzidis C, Klados M, Schlee W, et al. A review of physical and cognitive interventions in aging. Neurosci Biobehav Rev. 2014;44:206–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederico Pieruccini-Faria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pieruccini-Faria, F., Montero-Odasso, M., Hausdorff, J.M. (2020). Gait Variability and Fall Risk in Older Adults: The Role of Cognitive Function. In: Montero-Odasso, M., Camicioli, R. (eds) Falls and Cognition in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-030-24233-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24233-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24232-9

  • Online ISBN: 978-3-030-24233-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics