Skip to main content

Falls in Parkinson’s Disease and Lewy Body Dementia

  • Chapter
  • First Online:
Falls and Cognition in Older Persons

Abstract

Parkinsonism is common in the aging population and associated with falls and injurious falls. It is most commonly associated with a neurodegenerative disorder linked with Lewy body pathology (Parkinson’s disease or dementia with Lewy bodies), but also is found in vascular parkinsonism, progressive supranuclear palsy and multiple system atrophy. After discussing diagnostic considerations, this chapter reviews risk factors as well as medical, surgical and non-pharmacological approaches to manage falls in Parkinson’s disease and other Lewy body disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savica R, Grossardt BR, Bower JH, Ahlskog JE, Rocca WA. Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurol. 2013;70(7):859–66.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wenning GK, Ebersbach G, Verny M, Chaudhuri KR, Jellinger K, McKee A, et al. Progression of falls in postmortem-confirmed parkinsonian disorders. Mov Disord. 1999;14(6):947–50.

    Article  CAS  PubMed  Google Scholar 

  3. Iranzo A, Tolosa E, Gelpi E, Molinuevo JL, Valldeoriola F, Serradell M, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol. 2013;12(5):443–53.

    Article  PubMed  Google Scholar 

  4. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.

    Article  PubMed  Google Scholar 

  5. Galvin JE. Improving the clinical detection of Lewy body dementia with the Lewy body composite risk score. Alzheimers Dement (Amst). 2015;1(3):316–24.

    Google Scholar 

  6. Pedersen KF, Larsen JP, Tysnes OB, Alves G. Natural course of mild cognitive impairment in Parkinson disease: a 5-year population-based study. Neurology. 2017;88(8):767–74.

    Article  PubMed  Google Scholar 

  7. Vasconcellos LF, Pereira JS. Parkinson’s disease dementia: diagnostic criteria and risk factor review. J Clin Exp Neuropsychol. 2015;37(9):988–93.

    Article  PubMed  Google Scholar 

  8. Ferman TJ, Smith GE, Kantarci K, Boeve BF, Pankratz VS, Dickson DW, et al. Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology. 2013;81(23):2032–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lucetti C, Logi C, Del Dotto P, Berti C, Ceravolo R, Baldacci F, et al. Levodopa response in dementia with lewy bodies: a 1-year follow-up study. Parkinsonism Relat Disord. 2010;16(8):522–6.

    Article  PubMed  Google Scholar 

  10. Schaeffer E, Berg D. Dopaminergic therapies for non-motor symptoms in Parkinson’s disease. CNS Drugs. 2017;31(7):551–70.

    Article  CAS  PubMed  Google Scholar 

  11. Alty JE, Clissold BG, McColl CD, Reardon KA, Shiff M, Kempster PA. Longitudinal study of the levodopa motor response in Parkinson’s disease: relationship between cognitive decline and motor function. Mov Disord. 2009;24(16):2337–43.

    PubMed  Google Scholar 

  12. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology. 2017;89(1):88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ba F, Martin WR. Dopamine transporter imaging as a diagnostic tool for parkinsonism and related disorders in clinical practice. Parkinsonism Relat Disord. 2015;21(2):87–94.

    Article  PubMed  Google Scholar 

  14. Surendranathan A, O’Brien JT. Clinical imaging in dementia with Lewy bodies. Evid Based Ment Health. 2018;21(2):61–5.

    Article  PubMed  Google Scholar 

  15. Allen NE, Schwarzel AK, Canning CG. Recurrent falls in Parkinson’s disease: a systematic review. Parkinsons Dis. 2013;2013:906274.

    PubMed  PubMed Central  Google Scholar 

  16. Allan LM, Ballard CG, Rowan EN, Kenny RA. Incidence and prediction of falls in dementia: a prospective study in older people. PLoS One. 2009;4(5):e5521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Siracuse JJ, Odell DD, Gondek SP, Odom SR, Kasper EM, Hauser CJ, et al. Health care and socioeconomic impact of falls in the elderly. Am J Surg. 2012;203(3):335–8.. discussion 8

    Article  PubMed  Google Scholar 

  18. Mactier K, Lord S, Godfrey A, Burn D, Rochester L. The relationship between real world ambulatory activity and falls in incident Parkinson’s disease: influence of classification scheme. Parkinsonism Relat Disord. 2015;21(3):236–42.

    Article  PubMed  Google Scholar 

  19. Kerr GK, Worringham CJ, Cole MH, Lacherez PF, Wood JM, Silburn PA. Predictors of future falls in Parkinson disease. Neurology. 2010;75(2):116–24.

    Article  CAS  PubMed  Google Scholar 

  20. Pickering RM, Grimbergen YA, Rigney U, Ashburn A, Mazibrada G, Wood B, et al. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord. 2007;22(13):1892–900.

    Article  PubMed  Google Scholar 

  21. Schrag A, Choudhury M, Kaski D, Gallagher DA. Why do patients with Parkinson’s disease fall? A cross-sectional analysis of possible causes of falls. NPJ Parkinsons Dis. 2015;1:15011.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thurman DJ, Stevens JA, Rao JK. Quality standards Subcommittee of the American Academy of N. practice parameter: assessing patients in a neurology practice for risk of falls (an evidence-based review): report of the quality standards Subcommittee of the American Academy of neurology. Neurology. 2008;70(6):473–9.

    Article  PubMed  Google Scholar 

  23. Del Din S, Galna B, Godfrey A, Bekkers EM, Pelosin E, Nieuwhof F, et al. Analysis of free-living gait in older adults with and without Parkinson’s disease and with and without a history of falls: identifying generic and disease specific characteristics. J Gerontol A Biol Sci Med Sci. 2017.

    Google Scholar 

  24. van der Marck MA, Klok MP, Okun MS, Giladi N, Munneke M, Bloem BR, et al. Consensus-based clinical practice recommendations for the examination and management of falls in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(4):360–9.

    Article  PubMed  Google Scholar 

  25. Latt MD, Lord SR, Morris JGL, Fung VSC. Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease. Mov Disord. 2009;24(9):1280–9.

    Article  PubMed  Google Scholar 

  26. Hiorth YH, Alves G, Larsen JP, Schulz J, Tysnes OB, Pedersen KF. Long-term risk of falls in an incident Parkinson’s disease cohort: the Norwegian ParkWest study. J Neurol. 2017;264(2):364–72.

    Article  PubMed  Google Scholar 

  27. Voss TS, Elm JJ, Wielinski CL, Aminoff MJ, Bandyopadhyay D, Chou KL, et al. Fall frequency and risk assessment in early Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(7):837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nystrom H, Nordstrom A, Nordstrom P. Risk of injurious fall and hip fracture up to 26 y before the diagnosis of Parkinson disease: nested case-control studies in a Nationwide Cohort. Plos Med. 2016;13:–2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Matinolli M, Korpelainen JT, Sotaniemi KA, Myllyla VV, Korpelainen R. Recurrent falls and mortality in Parkinson’s disease: a prospective two-year follow-up study. Acta Neurol Scand. 2011;123(3):193–200.

    Article  CAS  PubMed  Google Scholar 

  30. Lord S, Galna B, Yarnall AJ, Coleman S, Burn D, Rochester L. Predicting first fall in newly diagnosed Parkinson’s disease: insights from a fall-naive cohort. Mov Disord. 2016;31(12):1829–36.

    Article  PubMed  Google Scholar 

  31. Mak MK, Auyeung MM. The mini-BESTest can predict parkinsonian recurrent fallers: a 6-month prospective study. J Rehabil Med. 2013;45(6):565–71.

    Article  PubMed  Google Scholar 

  32. Lord S, Galna B, Yarnall AJ, Morris R, Coleman S, Burn D, et al. Natural history of falls in an incident cohort of Parkinson’s disease: early evolution, risk and protective features. J Neurol. 2017;264(11):2268–76.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, et al. Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group Neurology. 1990;40(10):1529–34.

    CAS  Google Scholar 

  34. Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson’s disease. J Neurol. 2001;248(11):950–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lamont RM, Morris ME, Menz HB, McGinley JL, Brauer SG. Falls in people with Parkinson’s disease: a prospective comparison of community and home-based falls. Gait Posture. 2017;55:62–7.

    Article  PubMed  Google Scholar 

  36. Shaw FE. Prevention of falls in older people with dementia. J Neural Transm (Vienna). 2007;114(10):1259–64.

    Article  CAS  Google Scholar 

  37. Domingos JM, Godinho C, Dean J, Coelho M, Pinto A, Bloem BR, et al. Cognitive impairment in fall-related studies in Parkinson’s disease. J Park Dis. 2015;5(3):453–69.

    Google Scholar 

  38. Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, et al. MDS task force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord. 2011;26(10):1814–24.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are attention demanding? Eur J Neurosci. 2005;22(5):1248–56.

    Article  PubMed  Google Scholar 

  40. Amboni M, Cozzolino A, Longo K, Picillo M, Barone P. Freezing of gait and executive functions in patients with Parkinson’s disease. Mov Disord. 2008;23(3):395–400.

    Article  PubMed  Google Scholar 

  41. Allcock LM, Rowan EN, Steen IN, Wesnes K, Kenny RA, Burn DJ. Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(2):110–5.

    Article  CAS  PubMed  Google Scholar 

  42. Mak MK, Wong A, Pang MY. Impaired executive function can predict recurrent falls in Parkinson’s disease. Arch Phys Med Rehabil. 2014;95(12):2390–5.

    Article  PubMed  Google Scholar 

  43. Camicioli R, Majumdar SR. Relationship between mild cognitive impairment and falls in older people with and without Parkinson’s disease: 1-year prospective cohort study. Gait Posture. 2010;32(1):87–91.

    Article  PubMed  Google Scholar 

  44. Chou KL, Elm JJ, Wielinski CL, Simon DK, Aminoff MJ, Christine CW, et al. Factors associated with falling in early, treated Parkinson’s disease: the NET-PD LS1 cohort. J Neurol Sci. 2017;377:137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ferraye MU, Deba B, Pollak P. Deep brain stimulation effect on freezing of gait. Mov Disord. 2008;23:S489–S94.

    Article  PubMed  Google Scholar 

  46. Lubik S, Fogel W, Tronnier V, Krause M, Konig J, Jost WH. Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation. J Neural Transm. 2006;113(2):163–73.

    Article  CAS  PubMed  Google Scholar 

  47. Klawans HL. Individual manifestations of Parkinson’s disease after ten or more years of levodopa. Mov Disord. 1986;1(3):187–92.

    Article  CAS  PubMed  Google Scholar 

  48. Agid Y, Graybiel AM, Ruberg M, Hirsch E, Blin J, Dubois B, et al. The efficacy of levodopa treatment declines in the course of Parkinson’s disease: do nondopaminergic lesions play a role? Adv Neurol. 1990;53:83–100.

    CAS  PubMed  Google Scholar 

  49. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342(20):1484–91.

    Article  CAS  PubMed  Google Scholar 

  50. Parkinson Study G. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA. 2002;287(13):1653–61.

    Article  Google Scholar 

  51. Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, et al. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology. 2001;56(12):1712–21.

    Article  CAS  PubMed  Google Scholar 

  52. Shoulson I. DATATOP: a decade of neuroprotective inquiry. Parkinson study group. Deprenyl and tocopherol Antioxidative therapy of parkinsonism. Ann Neurol. 1998;44(3 Suppl 1):S160–6.

    Article  CAS  PubMed  Google Scholar 

  53. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, lasting effect in adjunct therapy with Rasagiline given once daily, study): a randomised, double-blind, parallel-group trial. Lancet. 2005;365(9463):947–54.

    Article  CAS  PubMed  Google Scholar 

  54. Kondo T. Drug intervention for freezing of gait resistant to dopaminergic therapy: a pilot study. Parkinsonism Relat D. 2006;12(supp. 2):S63–S6.

    Article  Google Scholar 

  55. Hauser RA, Heritier S, Rowse GJ, Hewitt LA, Isaacson SH. Droxidopa and reduced falls in a trial of Parkinson disease patients with neurogenic orthostatic hypotension. Clin Neuropharmacol. 2016;39(5):220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chung KA, Lobb BM, Nutt JG, Horak FB. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology. 2010;75(14):1263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crispo JA, Willis AW, Thibault DP, Fortin Y, Hays HD, McNair DS, et al. Associations between anticholinergic burden and adverse health outcomes in Parkinson disease. PLoS One. 2016;11(3):e0150621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Close JC, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):249–58.

    Article  CAS  PubMed  Google Scholar 

  59. Martinez-Ramirez D, Giugni JC, Almeida L, Walz R, Ahmed B, Chai FA, et al. Association between antidepressants and falls in Parkinson’s disease. J Neurol. 2016;263(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  60. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50(1–6):344–6.

    CAS  PubMed  Google Scholar 

  61. Fasano A, Romito LM, Daniele A, Piano C, Zinno M, Bentivoglio AR, et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain. 2010;133(9):2664–76.

    Article  PubMed  Google Scholar 

  62. Rizzone MG, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord. 2014;20(4):376–81.

    Article  CAS  PubMed  Google Scholar 

  63. Castrioto A, Lozano AM, Poon YY, Lang AE, Fallis M, Moro E. Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol. 2011;68(12):1550–6.

    Article  PubMed  Google Scholar 

  64. Cossu G, Pau M. Subthalamic nucleus stimulation and gait in Parkinson’s disease: a not always fruitful relationship. Gait Posture. 2017;52:205–10.

    Article  PubMed  Google Scholar 

  65. Guzzi G, Della Torre A, Chirchiglia D, Volpentesta G, Lavano A. Critical reappraisal of DBS targeting for movement disorders. J Neurosurg Sci. 2016;60(2):181–8.

    PubMed  Google Scholar 

  66. Collomb-Clerc A, Welter ML. Effects of deep brain stimulation on balance and gait in patients with Parkinson’s disease: a systematic neurophysiological review. Neurophysiologie clinique =. Clin Neurophysiol. 2015;45(4–5):371–88.

    Article  CAS  Google Scholar 

  67. Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11(2):140–9.

    Article  PubMed  Google Scholar 

  68. Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto JL, Pollak P, Rehncrona S, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain. 2005;128(Pt 10):2240–9.

    Article  CAS  PubMed  Google Scholar 

  69. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):2077–91.

    Article  CAS  PubMed  Google Scholar 

  70. van Nuenen BF, Esselink RA, Munneke M, Speelman JD, van Laar T, Bloem BR. Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord. 2008;23(16):2404–6.

    Article  PubMed  Google Scholar 

  71. Ferraye MU, Debu B, Fraix V, Xie-Brustolin J, Chabardes S, Krack P, et al. Effects of subthalamic nucleus stimulation and levodopa on freezing of gait in Parkinson disease. Neurology. 2008;70(16 Pt 2):1431–7.

    Article  CAS  PubMed  Google Scholar 

  72. McNeely ME, Earhart GM. Medication and subthalamic nucleus deep brain stimulation similarly improve balance and complex gait in Parkinson disease. Parkinsonism Relat Disord. 2013;19(1):86–91.

    Article  PubMed  Google Scholar 

  73. Crenna P, Carpinella I, Rabuffetti M, Rizzone M, Lopiano L, Lanotte M, et al. Impact of subthalamic nucleus stimulation on the initiation of gait in Parkinson’s disease. Exp Brain Res. 2006;172(4):519–32.

    Article  CAS  PubMed  Google Scholar 

  74. Stolze H, Klebe S, Poepping M, Lorenz D, Herzog J, Hamel W, et al. Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. Neurology. 2001;57(1):144–6.

    Article  CAS  PubMed  Google Scholar 

  75. Xu F, Ma W, Huang Y, Qiu Z, Sun L. Deep brain stimulation of pallidal versus subthalamic for patients with Parkinson’s disease: a meta-analysis of controlled clinical trials. Neuropsychiatr Dis Treat. 2016;12:1435–44.

    PubMed  PubMed Central  Google Scholar 

  76. Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, et al. Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci. 2014;17(3):449–54.

    Article  CAS  PubMed  Google Scholar 

  77. Lee MS, Rinne JO, Marsden CD. The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med J. 2000;41(2):167–84.

    Article  CAS  PubMed  Google Scholar 

  78. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007;130(Pt 6):1596–607.

    Article  PubMed  Google Scholar 

  79. Strafella AP, Lozano AM, Ballanger B, Poon YY, Lang AE, Moro E. rCBF changes associated with PPN stimulation in a patient with Parkinson’s disease: a PET study. Mov Disord. 2008;23(7):1051–4.

    Article  PubMed  Google Scholar 

  80. Thevathasan W, Silburn PA, Brooker H, Coyne TJ, Khan S, Gill SS, et al. The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg Psychiatry. 2010;81(10):1099–104.

    Article  PubMed  Google Scholar 

  81. Khan S, Mooney L, Plaha P, Javed S, White P, Whone AL, et al. Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson’s disease. Br J Neurosurg. 2011;25(2):273–80.

    Article  PubMed  Google Scholar 

  82. Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. 2010;133(Pt 1):205–14.

    Article  CAS  PubMed  Google Scholar 

  83. Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, et al. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain. 2010;133(Pt 1):215–24.

    Article  PubMed  Google Scholar 

  84. Thevathasan W, Pogosyan A, Hyam JA, Jenkinson N, Foltynie T, Limousin P, et al. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain. 2012;135(Pt 1):148–60.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna). 2016;123(7):695–729.

    Article  Google Scholar 

  86. Brosius SN, Gonzalez CL, Shuresh J, Walker HC. Reversible improvement in severe freezing of gait from Parkinson’s disease with unilateral interleaved subthalamic brain stimulation. Parkinsonism Relat Disord. 2015;21(12):1469–70.

    Article  PubMed  Google Scholar 

  87. Chastan N, Westby GW, Yelnik J, Bardinet E, Do MC, Agid Y, et al. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain. 2009;132(Pt 1):172–84.

    CAS  PubMed  Google Scholar 

  88. Weiss D, Klotz R, Govindan RB, Scholten M, Naros G, Ramos-Murguialday A, et al. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease. Brain J Neurol. 2015;138(Pt 3):679–93.

    Article  Google Scholar 

  89. Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain. 2013;136(Pt 7):2098–108.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Verghese J, Mahoney J, Ambrose AF, Wang C, Holtzer R. Effect of cognitive remediation on gait in sedentary seniors. J Gerontol A Biol Sci Med Sci. 2010;65(12):1338–43.

    Article  PubMed  Google Scholar 

  91. Silsupadol P, Shumway-Cook A, Lugade V, van Donkelaar P, Chou LS, Mayr U, et al. Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial. Arch Phys Med Rehabil. 2009;90(3):381–7.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mirelman A, Maidan I, Herman T, Deutsch JE, Giladi N, Hausdorff JM. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson’s disease? J Gerontol A Biol Sci Med Sci. 2011;66(2):234–40.

    Article  PubMed  Google Scholar 

  93. You JH, Shetty A, Jones T, Shields K, Belay Y, Brown D. Effects of dual-task cognitive-gait intervention on memory and gait dynamics in older adults with a history of falls: a preliminary investigation. NeuroRehabilitation. 2009;24(2):193–8.

    PubMed  Google Scholar 

  94. Auriel E, Hausdorff JM, Herman T, Simon ES, Giladi N. Effects of methylphenidate on cognitive function and gait in patients with Parkinson’s disease: a pilot study. Clin Neuropharmacol. 2006;29(1):15–7.

    Article  CAS  PubMed  Google Scholar 

  95. Pollak L, Dobronevsky Y, Prohorov T, Bahunker S, Rabey JM. Low dose methylphenidate improves freezing in advanced Parkinson’s disease during off-state. J Neural Transm Suppl. 2007;72:145–8.

    Article  CAS  Google Scholar 

  96. Espay AJ, Dwivedi AK, Payne M, Gaines L, Vaughan JE, Maddux BN, et al. Methylphenidate for gait impairment in Parkinson disease: a randomized clinical trial. Neurology. 2011;76(14):1256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mancini M, Fling BW, Gendreau A, Lapidus J, Horak FB, Chung K, et al. Effect of augmenting cholinergic function on gait and balance. BMC Neurol. 2015;15:264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Gregson CL, Dennison EM, Compston JE, Adami S, Adachi JD, Anderson FA Jr, et al. Disease-specific perception of fracture risk and incident fracture rates: GLOW cohort study. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2014;25(1):85–95.

    Article  CAS  Google Scholar 

  99. Johnell O, Sernbo I. Health and social status in patients with hip fractures and controls. Age Ageing. 1986;15(5):285–91.

    Article  CAS  PubMed  Google Scholar 

  100. Sato Y, Iwamoto J, Honda Y. Vitamin d deficiency-induced vertebral fractures may cause stooped posture in Parkinson disease. American Journal of Physical Medicine & Rehabilitation / Association of Academic Physiatrists. 2011;90(4):281–6.

    Article  Google Scholar 

  101. Sato Y, Iwamoto J, Honda Y. Once-weekly risedronate for prevention of hip fracture in women with Parkinson’s disease: a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2011;82(12):1390–3.

    Article  PubMed  Google Scholar 

  102. Sato Y, Iwamoto J, Kanoko T, Satoh K. Alendronate and vitamin D2 for prevention of hip fracture in Parkinson’s disease: a randomized controlled trial. Mov Disord. 2006;21(7):924–9.

    Article  PubMed  Google Scholar 

  103. Metta V, Sanchez TC, Padmakumar C. Osteoporosis: a hidden nonmotor face of Parkinson’s disease. Int Rev Neurobiol. 2017;134:877–90.

    Article  PubMed  Google Scholar 

  104. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Campos C, Rocha NB, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Rev Neurother. 2016;16(6):723–34.

    Article  CAS  PubMed  Google Scholar 

  106. da Silva PG, Domingues DD, de Carvalho LA, Allodi S, Correa CL. Neurotrophic factors in Parkinson’s disease are regulated by exercise: evidence-based practice. J Neurol Sci. 2016;363:5–15.

    Article  PubMed  CAS  Google Scholar 

  107. Goodwin VA, Abbott RA, Whear R, Bethel A, Ukoumunne OC, Thompson-Coon J, et al. Multiple component interventions for preventing falls and fall-related injuries among older people: systematic review and meta-analysis. BMC Geriatr. 2014;14:15.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tricco AC, Cogo E, Holroyd-Leduc J, Sibley KM, Feldman F, Kerr G, et al. Efficacy of falls prevention interventions: protocol for a systematic review and network meta-analysis. Syst Rev. 2013;2:38.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Chang JT, Morton SC, Rubenstein LZ, Mojica WA, Maglione M, Suttorp MJ, et al. Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. BMJ. 2004;328(7441):680.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sherrington C, Michaleff ZA, Fairhall N, Paul SS, Tiedemann A, Whitney J, et al. Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. Br J Sports Med. 2017;51(24):1750–8.

    Article  PubMed  Google Scholar 

  111. Rimland JM, Abraha I, Dell’Aquila G, Cruz-Jentoft A, Soiza R, Gudmusson A, et al. Effectiveness of non-pharmacological interventions to prevent falls in older people: a systematic overview. The SENATOR project ONTOP series. PLoS ONE. 2016;11(8):e0161579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Suteerawattananon M, Morris GS, Etnyre BR, Jankovic J, Protas EJ. Effects of visual and auditory cues on gait in individuals with Parkinson’s disease. J Neurol Sci. 2004;219(1–2):63–9.

    Article  CAS  PubMed  Google Scholar 

  113. Ledger S, Galvin R, Lynch D, Stokes EK. A randomised controlled trial evaluating the effect of an individual auditory cueing device on freezing and gait speed in people with Parkinson’s disease. BMC Neurol. 2008;8:46.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Arias P, Cudeiro J. Effect of rhythmic auditory stimulation on gait in parkinsonian patients with and without freezing of gait. PLoS One. 2010;5(3):e9675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Satoh M, Kuzuhara S. Training in mental singing while walking improves gait disturbance in Parkinson’s disease patients. Eur Neurol. 2008;60(5):237–43.

    Article  PubMed  Google Scholar 

  116. Li F, Harmer P, Fitzgerald K, Eckstrom E, Stock R, Galver J, et al. Tai chi and postural stability in patients with Parkinson’s disease. N Engl J Med. 2012;366(6):511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morris ME, Menz HB, McGinley JL, Watts JJ, Huxham FE, Murphy AT, et al. A randomized controlled trial to reduce falls in people with Parkinson’s disease. Neurorehabil Neural Repair. 2015;29(8):777–85.

    Article  PubMed  Google Scholar 

  118. Sparrow D, DeAngelis TR, Hendron K, Thomas CA, Saint-Hilaire M, Ellis T. Highly challenging balance program reduces fall rate in Parkinson disease. J Neurol Physical Therapy: JNPT. 2016;40(1):24–30.

    Article  Google Scholar 

  119. Wong-Yu IS, Mak MK. Task- and context-specific balance training program enhances dynamic balance and functional performance in parkinsonian nonfallers: a randomized controlled trial with six-month follow-up. Arch Phys Med Rehabil. 2015;96(12):2103–11.

    Article  PubMed  Google Scholar 

  120. Shen X, Mak MK. Technology-assisted balance and gait training reduces falls in patients with Parkinson’s disease: a randomized controlled trial with 12-month follow-up. Neurorehabil Neural Repair. 2015;29(2):103–11.

    Article  PubMed  Google Scholar 

  121. Morris ME, Martin C, McGinley JL, Huxham FE, Menz HB, Taylor NF, et al. Protocol for a home-based integrated physical therapy program to reduce falls and improve mobility in people with Parkinson’s disease. BMC Neurol. 2012;12:54.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P. Rehabilitation treatment of gait in patients with Parkinson’s disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov Disord. 2009;24(8):1139–43.

    Article  PubMed  Google Scholar 

  123. Morris ME, Taylor NF, Watts JJ, Evans A, Horne M, Kempster P, et al. A home program of strength training, movement strategy training and education did not prevent falls in people with Parkinson’s disease: a randomised trial. J Physiother. 2017;63(2):94–100.

    Article  PubMed  Google Scholar 

  124. McKay JL, Ting LH, Hackney ME. Balance, body motion, and muscle activity after high-volume short-term dance-based rehabilitation in persons with Parkinson disease: a pilot study. Journal of neurologic physical therapy: JNPT. 2016;40(4):257–68.

    Article  PubMed  Google Scholar 

  125. McNeely ME, Mai MM, Duncan RP, Earhart GM. Differential effects of tango versus dance for PD in Parkinson disease. Front Aging Neurosci. 2015;7:239.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Duncan RP, Earhart GM. Are the effects of community-based dance on Parkinson disease severity, balance, and functional mobility reduced with time? A 2-year prospective pilot study. J Altern Complement Med. 2014;20(10):757–63.

    Article  PubMed  Google Scholar 

  127. Binks S, Dobson R. Risk factors, epidemiology and treatment strategies for metabolic bone disease in patients with neurological disease. Curr Osteoporos Rep. 2016;14(5):199–210.

    Article  CAS  PubMed  Google Scholar 

  128. Mirelman A, Giladi N, Hausdorff JM. Body-fixed sensors for Parkinson disease. JAMA. 2015;314(9):873–4.

    Article  CAS  PubMed  Google Scholar 

  129. Morris R, Hickey A, Del Din S, Godfrey A, Lord S, Rochester L. A model of free-living gait: a factor analysis in Parkinson’s disease. Gait Posture. 2017;52:68–71.

    Article  PubMed  Google Scholar 

  130. Weiss A, Herman T, Giladi N, Hausdorff JM. Objective assessment of fall risk in Parkinson’s disease using a body-fixed sensor worn for 3 days. PLoS One. 2014;9(5):e96675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L. Falls in Parkinson’s disease: a complex and evolving picture. Mov Disord. 2017;32(11):1524–36.

    Article  PubMed  Google Scholar 

  132. Buchman AS, Leurgans SE, Weiss A, Vanderhorst V, Mirelman A, Dawe R, et al. Associations between quantitative mobility measures derived from components of conventional mobility testing and parkinsonian gait in older adults. PLoS One. 2014;9(1):e86262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Austin D, Hayes TL, Kaye J, Mattek N, Pavel M. Unobtrusive monitoring of the longitudinal evolution of in-home gait velocity data with applications to elder care. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2011;2011:6495–8.

    Google Scholar 

  134. Kaye J, Mattek N, Dodge H, Buracchio T, Austin D, Hagler S, et al. One walk a year to 1000 within a year: continuous in-home unobtrusive gait assessment of older adults. Gait Posture. 2012;35(2):197–202.

    Article  PubMed  Google Scholar 

  135. Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet. 2016;388(10050):1170–82.

    Article  PubMed  Google Scholar 

  136. Castrioto A, Moro E. New targets for deep brain stimulation treatment of Parkinson’s disease. Expert Rev Neurother. 2013;13(12):1319–28.

    Article  CAS  PubMed  Google Scholar 

  137. Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol. 2015;133:27–49.

    Article  PubMed  Google Scholar 

  138. Little S, Beudel M, Zrinzo L, Foltynie T, Limousin P, Hariz M, et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87(7):717–21.

    Article  PubMed  Google Scholar 

  139. Rosa M, Arlotti M, Ardolino G, Cogiamanian F, Marceglia S, Di Fonzo A, et al. Adaptive deep brain stimulation in a freely moving parkinsonian patient. Mov Disord. 2015;30(7):1003–5.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kishida KT, Saez I, Lohrenz T, Witcher MR, Laxton AW, Tatter SB, et al. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proc Natl Acad Sci U S A. 2016;113(1):200–5.

    Article  CAS  PubMed  Google Scholar 

  141. Van Gompel JJ, Chang SY, Goerss SJ, Kim IY, Kimble C, Bennet KE, et al. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback. Neurosurg Focus. 2010;29(2):E6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wassermann EM, Lisanby SH. Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin Neurophysiol. 2001;112(8):1367–77.

    Article  CAS  PubMed  Google Scholar 

  143. Chou YH, Hickey PT, Sundman M, Song AW, Chen NK. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol. 2015;72(4):432–40.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kim MS, Hyuk Chang W, Cho JW, Youn J, Kim YK, Woong Kim S, et al. Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson’s disease. Restor Neurol Neurosci. 2015;33(4):521–30.

    PubMed  PubMed Central  Google Scholar 

  145. Dagan M, Herman T, Mirelman A, Giladi N, Hausdorff JM. The role of the prefrontal cortex in freezing of gait in Parkinson’s disease: insights from a deep repetitive transcranial magnetic stimulation exploratory study. Exp Brain Res. 2017;235:2463.

    Article  PubMed  Google Scholar 

  146. Tard C, Devanne H, Defebvre L, Delval A. Single session intermittent theta-burst stimulation on the left premotor cortex does not alleviate freezing of gait in Parkinson’s disease. Neurosci Lett. 2016;628:1.

    Article  CAS  PubMed  Google Scholar 

  147. Chang WH, Kim MS, Park E, Cho JW, Youn J, Kim YK, et al. Effect of dual-mode and dual-site noninvasive brain stimulation on freezing of gait in patients with Parkinson disease. Arch Phys Med Rehabil. 2017;98(7):1283–90.

    Article  PubMed  Google Scholar 

  148. Rektorova I, Sedlackova S, Telecka S, Hlubocky A, Rektor I. Repetitive transcranial stimulation for freezing of gait in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society. 2007;22(10):1518–9.

    Article  Google Scholar 

  149. Kim MS, Chang WH, Cho JW, Youn J, Kim YK, Kim SW, et al. Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson’s disease. Restor Neurol Neurosci. 2015;33(4):521–30.

    PubMed  PubMed Central  Google Scholar 

  150. Valentino F, Cosentino G, Brighina F, Pozzi NG, Sandrini G, Fierro B, et al. Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study. Mov Disord. 2014;29(8):1064–9.

    Article  PubMed  Google Scholar 

  151. Dagan M, Herman T, Harrison R, Zhou J, Giladi N, Ruffini G, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease. Mov Disord. 2018;33(4):642–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Ba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joza, S., Camicioli, R., Ba, F. (2020). Falls in Parkinson’s Disease and Lewy Body Dementia. In: Montero-Odasso, M., Camicioli, R. (eds) Falls and Cognition in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-030-24233-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24233-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24232-9

  • Online ISBN: 978-3-030-24233-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics