Skip to main content

Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1168))

Abstract

Following the completion of the Human Genome Project in 2003, research in oncology has progressively focused on the sequencing of cancer genomes, with the aim of better understanding the genetic basis of oncogenesis and identifying actionable alterations. The development of next-generation-sequencing (NGS) techniques, commercially available since 2006, allowed for a cost- and time-effective sequencing of tumor DNA, leading to a “genomic era” of cancer research and treatment. NGS provided a significant step forward in Personalized Medicine (PM) by enabling the detection of somatic driver mutations, resistance mechanisms, quantification of mutational burden, germline mutations which settled the foundation of a new approach in cancer care. In this chapter we discuss the history, available techniques and applications of NGS in oncology, with a particular referral to the PM approach and the emerging role of the research field of pharmacogenomics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Vogelstein B et al (2013) Cancer genome landscapes. Science (80-) 339:1546–1558

    Article  CAS  Google Scholar 

  2. Futreal PA et al (2004) A census of human cancer genes. Nat Rev Cancer 4:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  PubMed  Google Scholar 

  4. Fischer OM, Streit S, Hart S, Ullrich A (2003) Beyond herceptin and gleevec. Curr Opin Chem Biol 7:490–495

    Article  CAS  PubMed  Google Scholar 

  5. Green ED, Watson JD, Collins FS (2015) Human genome project: twenty-five years of big biology. Nature 526:29–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Współczesna Onkol 1A:68–77

    Article  Google Scholar 

  7. Pleasance ED et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196

    Article  CAS  PubMed  Google Scholar 

  8. Shin SH, Bode AM, Dong Z (2017) Precision medicine: the foundation of future cancer therapeutics. NPJ Precis Oncol 1:12

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mendoza MCB (2010) HIM and the path to personalized medicine. J AHIMA 81:38–42.; quiz 43

    PubMed  Google Scholar 

  10. Gao J et al (2016) Comparison of next-generation sequencing, quantitative PCR, and sanger sequencing for mutation profiling of EGFR, KRAS, PIK3CA and BRAF in clinical lung tumors. Clin Lab 62:689–696

    CAS  PubMed  Google Scholar 

  11. Ignatiadis M, Dawson S-J (2014) Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Ann Oncol 25:2304–2313

    Article  CAS  PubMed  Google Scholar 

  12. Yang M et al (2018) Incorporating blood-based liquid biopsy information into cancer staging: time for a TNMB system? Ann Oncol 29:311–323

    Article  CAS  PubMed  Google Scholar 

  13. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Illumina | Sequencing and array-based solutions for genetic research. Available at: https://emea.illumina.com/. Accessed 15 Apr 2018

  16. Ion Torrent. Available at: https://www.thermofisher.com/it/en/home/brands/ion-torrent.html. Accessed 15 Apr 2018

  17. SOLiD® Next-Generation Sequencing. Available at https://www.thermofisher.com/it/en/home/life-science/sequencing/next-generation-sequencing/solid-next-generation-sequencing/solid-next-generation-sequencing-systems-reagents-accessories.html. Accessed 15 Apr 2018

  18. PacBio. Available at: https://www.pacb.com/. Accessed: 15 Apr 2018

  19. Oxford Nanopore Technologies. Available at: https://nanoporetech.com/. Accessed: 15 Apr 2018

  20. Gonzalez-Perez A et al (2013) Computational approaches to identify functional genetic variants in cancer genomes. Nat Methods 10:723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raphael BJ, Dobson JR, Oesper L, Vandin F (2014) Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med 6:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ding L, Wendl MC, McMichael JF, Raphael BJ (2014) Expanding the computational toolbox for mining cancer genomes. Nat Rev Genet 15:556–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swanton C et al (2016) Consensus on precision medicine for metastatic cancers: a report from the MAP conference. Ann Oncol 27:1443–1448

    Article  CAS  PubMed  Google Scholar 

  24. Kerr KM et al (2014) Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann Oncol 25:1681–1690

    Article  CAS  PubMed  Google Scholar 

  25. Mok TS et al (2017) Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 376:629–640

    Article  CAS  PubMed  Google Scholar 

  26. Schiavon G et al (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7:313ra182–313ra182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chandarlapaty S et al (2016) Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol 2:1310–1315

    Article  PubMed  PubMed Central  Google Scholar 

  28. Spoerke JM et al (2016) Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat Commun 7:11579

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cristofanilli M et al (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phas. Lancet Oncol 17:425–439

    Article  CAS  PubMed  Google Scholar 

  30. Hainsworth JD et al (2013) Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon Research Institute. J Clin Oncol 31:217–223

    Article  CAS  PubMed  Google Scholar 

  31. Varghese AM et al (2017) Clinical and molecular characterization of patients with cancer of unknown primary in the modern era. Ann Oncol 28:3015–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drilon A et al (2018) Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med 378:731–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Urbach D, Lupien M, Karagas MR, Moore JH (2012) Cancer heterogeneity: origins and implications for genetic association studies. Trends Genet 28:538–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerdes MJ et al (2014) Emerging understanding of multiscale tumor heterogeneity. Front Oncol 4:366

    Article  PubMed  PubMed Central  Google Scholar 

  35. Atkinson AJ et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  36. Goodman AM et al (2017) Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 16:2598–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Le DT et al (2017) HHS Public Access 357:409–413

    CAS  Google Scholar 

  38. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  CAS  PubMed  Google Scholar 

  39. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511–518

    Article  CAS  PubMed  Google Scholar 

  41. Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272

    Article  CAS  PubMed  Google Scholar 

  42. Xia B et al (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22:719–729

    Article  CAS  PubMed  Google Scholar 

  43. McCabe N et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115

    Article  CAS  PubMed  Google Scholar 

  44. Hustedt N, Durocher D (2017) The control of DNA repair by the cell cycle. Nat.Cell Biol 19:1–9

    Article  CAS  Google Scholar 

  45. Telli ML et al (2016) Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res 22:3764–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Waddell N et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. O’Kane GM, Connor AA, Gallinger S (2017) Characterization, detection, and treatment approaches for homologous recombination deficiency in cancer. Trends Mol Med. https://doi.org/10.1016/j.molmed.2017.10.007

    Article  PubMed  CAS  Google Scholar 

  48. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science (80) 260:816–819

    Article  CAS  Google Scholar 

  49. Lynch HT et al (1993) Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology 104:1535–1549

    Article  CAS  PubMed  Google Scholar 

  50. Salahshor S et al (1999) Microsatellite instability in sporadic colorectal cancer is not an independent prognostic factor. Br J Cancer 81:190–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saridaki Z, Souglakos J, Georgoulias V (2014) Prognostic and predictive significance of MSI in stages II/III colon cancer. World J Gastroenterol 20:6809–6814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Le DT et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gan C et al (2015) Applicability of next generation sequencing technology in microsatellite instability testing. Genes (Basel) 6:46–59

    Article  CAS  Google Scholar 

  54. Chalmers ZR et al (2017) Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:1–14

    Article  CAS  Google Scholar 

  55. Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rizvi NA et al (2016) Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science (80-.) 348:124–128

    Article  CAS  Google Scholar 

  57. Rosenberg JE et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 387:1909–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnson DB et al (2016) Targeted Next Generation Sequencing Identifies Markers of Response to PD-1 Blockade. Cancer Immunol Res 4:959–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sparano JA et al (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373:2005–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cardoso F, Piccart-Gebhart M, Veer LV, Rutgers E, TRANSBIG Consortium (2007) The MINDACT trial: the first prospective clinical validation of a genomic tool. Mol Oncol 1:246–251

    Article  PubMed  PubMed Central  Google Scholar 

  61. O’Brien S et al (2013) Chronic myelogenous leukemia, version 1.2014. J Natl Compr Cancer Netw 11:1327–1340

    Article  Google Scholar 

  62. Pikor LA, Ramnarine VR, Lam S, Lam WL (2013) Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 82:179–189

    Article  PubMed  Google Scholar 

  63. Brinkmann K et al Plasma-based diagnostics for detection of EML4-ALK fusion transcripts in NSCLC patients

    Google Scholar 

  64. Gambino G, Tancredi M, Falaschi E, Aretini P, Caligo MA (2015) Characterization of three alternative transcripts of the BRCA1 gene in patients with breast cancer and a family history of breast and/or ovarian cancer who tested negative for pathogenic mutations. Int J Mol Med 35:950–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68:5469–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Antonarakis ES et al (2014) AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371:1028–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Consortium S-I et al (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32:903–914

    Article  CAS  Google Scholar 

  69. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  70. Piskol R, Ramaswami G, Li JB (2013) Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 93:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murtaza M et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  PubMed  Google Scholar 

  72. Chabon JJ et al (2016) Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 7:11815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang R, Li X, Zhang H, Wang K, He J (2017) Cell-free circulating tumor DNA analysis for breast cancer and its clinical utilization as a biomarker. Oncotarget 8:75742–75755

    PubMed  PubMed Central  Google Scholar 

  74. Lebofsky R et al (2015) Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types. Mol Oncol 9:783–790

    Article  CAS  PubMed  Google Scholar 

  75. Shu Y (2017) et al, Circulating tumor DNA mutation profiling by targeted next generation sequencing provides guidance for personalized treatments in multiple cancer types. https://doi.org/10.1038/s41598-017-00520-1

  76. Merker JD et al (2018) Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol JCO2017768671. https://doi.org/10.1200/JCO.2017.76.8671

    Article  CAS  PubMed  Google Scholar 

  77. Vogel F (1959) Moderne Probleme der Humangenetik. In: Ergebnisse der Inneren Medizin und Kinderheilkunde. Springer, Berlin Heidelberg, pp 52–125. https://doi.org/10.1007/978-3-642-94744-5_2

    Chapter  Google Scholar 

  78. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286:487–491

    Article  CAS  PubMed  Google Scholar 

  79. Demkow U (2015) Next generation sequencing in pharmacogenomics. in clinical applications for next-generation sequencing. https://doi.org/10.1016/B978-0-12-801739-5.00011-8

    Chapter  Google Scholar 

  80. Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4:59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Crews KR et al (2012) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 91:321–326

    Article  CAS  PubMed  Google Scholar 

  82. Goetz MP et al (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23:9312–9318

    Article  CAS  PubMed  Google Scholar 

  83. Jazwinska-Tarnawska E et al (2001) The influence of CYP2D6 polymorphism on the antiarrhythmic efficacy of propafenone in patients with paroxysmal atrial fibrillation during 3 months propafenone prophylactic treatment. Int J Clin Pharmacol Ther 39:288–292

    Article  CAS  PubMed  Google Scholar 

  84. Martínez-Sellés M et al (2005) Pharmacogenetic study of the response to flecainide and propafenone in patients with atrial fibrillation. Rev Esp Cardiol 58:745–748

    Article  PubMed  Google Scholar 

  85. van Kuilenburg ABP et al (2010) Dihydropyrimidinase deficiency: phenotype, genotype and structural consequences in 17 patients. Biochim Biophys Acta – Mol Basis Dis 1802:639–648

    Article  CAS  Google Scholar 

  86. Del Re M et al (2016) Uncommon dihydropyrimidine dehydrogenase mutations and toxicity by fluoropyrimidines: a lethal case with a new variant. Pharmacogenomics 17:5–9

    Article  PubMed  CAS  Google Scholar 

  87. Lindeman NI et al (2018) Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med 142:321–346

    Article  CAS  PubMed  Google Scholar 

  88. Wolff AC et al (2014) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 138:241–256

    Article  PubMed  Google Scholar 

  89. Sepulveda AR et al (2017) Molecular biomarkers for the evaluation of colorectal cancer guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med 141:625–657

    Article  CAS  PubMed  Google Scholar 

  90. Su D et al (2017) High performance of targeted next generation sequencing on variance detection in clinical tumor specimens in comparison with current conventional methods. J Exp Clin Cancer Res 36:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Frampton GM et al (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang Y, Botton MR, Scott ER, Scott SA (2017) Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing. Pharmacogenomics. https://doi.org/10.2217/pgs-2017-0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mandelker D et al (2016) Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med 18:1282–1289

    Article  CAS  PubMed  Google Scholar 

  94. Jennings LJ et al (2017) Guidelines for validation of next-generation sequencing–based oncology panels. J Mol Diagnostics 19:341–365

    Article  Google Scholar 

  95. Li MM et al (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer. J Mol Diagnostics 19:4–23

    Article  CAS  Google Scholar 

  96. Eilbeck K, Quinlan A, Yandell M (2017) Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet 18:599–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. André F et al (2014) Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol 15:267–274

    Article  PubMed  CAS  Google Scholar 

  98. Massard C et al (2017) High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov 7:586–595

    Article  CAS  PubMed  Google Scholar 

  99. Esposito A, Criscitiello C, Curigliano G (2015) Neoadjuvant model for testing emerging targeted therapies in breast cancer. J Natl Cancer Inst – Monogr 2015:51–55

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Curigliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morganti, S., Tarantino, P., Ferraro, E., D’Amico, P., Duso, B.A., Curigliano, G. (2019). Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. In: Ruiz-Garcia, E., Astudillo-de la Vega, H. (eds) Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics. Advances in Experimental Medicine and Biology, vol 1168. Springer, Cham. https://doi.org/10.1007/978-3-030-24100-1_2

Download citation

Publish with us

Policies and ethics