Skip to main content

Why Do We Need Voronoi Cells and Delaunay Meshes?

  • Conference paper
  • First Online:
Numerical Geometry, Grid Generation and Scientific Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 131))

Abstract

Unlike other schemes that locally violate the essential stability properties of the analytic parabolic and elliptic problems, Voronoi finite volume methods (FVM) and boundary conforming Delaunay meshes provide good approximation of the geometry of a problem and are able to preserve the essential qualitative properties of the solution for any given resolution in space and time as well as changes in time scales of multiple orders of magnitude. This work provides a brief description of the essential and useful properties of the Voronoi FVM, which look like going more and more out of the mainstream over the last decades, and a motivation why Voronoi FVM deserve to be used more often in practice than they are currently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, D., Southwell, R.: Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl. Math. 8, 129–145 (1955)

    Google Scholar 

  2. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 (1987)

    Google Scholar 

  3. Chew, P.L.: Constrained Delaunay triangulations. Algorithmica 4(1), 97–108 (1989)

    Google Scholar 

  4. Delaunay, B.: Sur La Sphére Vide. Izv. Akad. Nauk SSSR. Otd. Matem. i Estestv. Nauk 7, 793–800 (1934)

    Google Scholar 

  5. Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. Elsevier Science B.V., Amsterdam (1997)

    Google Scholar 

  6. Fleischmann, P.: Mesh generation for technology CAD in three dimensions. Dissertation, Technische Universität, Wien (1999)

    Google Scholar 

  7. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Biol. 18(3), 259–278 (1969)

    Google Scholar 

  8. Gajewski, H., Gärtner, K.: A dissipative discretization scheme for a nonlocal phase segregation model. Z. Angew. Math. Mech. 85, 815–822 (2005)

    Google Scholar 

  9. Gajewski, H., Gärtner, K.: On a nonlocal model of image segmentation. Z. Angew. Math. Phys. 56, 572–591 (2005)

    Google Scholar 

  10. Gärtner, K.: Existence of bounded discrete steady-state solutions of the van Roosbroeck system on boundary conforming Delaunay grids. SIAM J. Sci. Comput. 31(2), 1347–1362 (2009)

    Google Scholar 

  11. Gärtner, K.: Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi–Dirac statistic functions. J. Comput. Electron. 14(3), 773–787 (2015)

    Google Scholar 

  12. Glitzky, A., Gärtner, K.: Energy estimates for continuous and discretized electro-reaction-diffusion systems. Nonlinear Anal. 70, 788–805 (2009)

    Google Scholar 

  13. Il’in, A.M.: A difference scheme for a differential equation with a small parameter multiplying the second derivative. Mat. Zametki 6, 237–248 (1969)

    Google Scholar 

  14. Kerkhoven, T.: Piecewise linear Petrov-Galerkin error estimates for the box method. SIAM J. Numer. Anal. 33(5), 1864–1884 (1996)

    Google Scholar 

  15. Kopteva, N.: Linear finite elements may be only first-order pointwise accurate on anisotropic triangulations. Math. Comp. 83(289), 2061–2070 (2014)

    Google Scholar 

  16. Kopteva, N.: How accurate are finite elements on anisotropic triangulations in the maximum norm? J. Comput. Appl. Math. 364, 112316 (2020)

    Google Scholar 

  17. Kosik, R., Fleischmann, P., Haindl, B., Pietra, P., Selberherr, S.: On the interplay between meshing and discretization in three-dimensional diffusion simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(11), 1233–1240 (2000)

    Google Scholar 

  18. Lawson, C.L.: Software for C 1 surface interpolation. In: Mathematical Software III, pp. 161–194. Academic Press, New York (1977)

    Google Scholar 

  19. MacNeal, R.H.: An asymmetrical finite difference network. Quart. Math. Appl. 11, 295–310 (1953)

    Google Scholar 

  20. Rippa, S.: Minimal roughness property of the Delaunay triangulation. Comput. Aided Geom. Design 7(6), 489–497 (1990)

    Google Scholar 

  21. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electr. Dev. 16, 64–77 (1969)

    Google Scholar 

  22. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1–3), 21–74 (2002)

    Google Scholar 

  23. Shewchuk, J.R.: General-dimensional constrained Delaunay and constrained regular triangulations. I. Combinatorial properties. Discrete Comput. Geom. 39(1–3), 580–637 (2008)

    Google Scholar 

  24. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015)

    Google Scholar 

  25. Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50(1), 38–53 (2010)

    Google Scholar 

  26. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  27. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Reine Angew. Math. 133, 97–178 (1907)

    Google Scholar 

  28. Xu, J., Zikatanov, L.: A monotone finite element scheme for convection-diffusion equations. Math. Comp. 68(228), 1429–1446 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Gärtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gärtner, K., Kamenski, L. (2019). Why Do We Need Voronoi Cells and Delaunay Meshes?. In: Garanzha, V., Kamenski, L., Si, H. (eds) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-030-23436-2_3

Download citation

Publish with us

Policies and ethics