Skip to main content

Detection and Effects of Metal and Organometallic Compounds with Microbial Bioluminescence and Raman Spectroscopy

  • Reference work entry
  • First Online:
Handbook of Cell Biosensors

Abstract

Metals and organometallic compounds are well known for their toxic effects on the biosphere. Despite these toxic effects, organometallic compounds are omnipresent in the various environmental compartments (water, air, soil). In this context, it is crucial to be able to detect these environmental contaminants and to assess their effects so that the environment and the public health can be protected.

Physicochemical methods are particularly relevant for evaluating the overall fraction in the environment. However, this view is insufficient to determine the potential effects of pollution on the biosphere. In this chapter, we focus on two metrological approaches based on microbial bioluminescence and Raman spectroscopy to characterize pollutants in different ways, namely the toxicological effects induced by pollutants and their bioavailability/bioaccessibility in environmental matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Affi M, Solliec C, Legentillomme P, Comiti J, Legrand J, Thouand G (2009) Numerical design of a card and related physicochemical phenomena occurring inside agarose-immobilized bacteria: a valuable tool for increasing our knowledge of biosensors. Sens Actuators B Chem 138(1): 310–317

    Article  CAS  Google Scholar 

  • Aloisi A, Della Torre A, De Benedetto A, Rinaldi R (2019) Bio-recognition in spectroscopy-based biosensors for *heavy metals-water and waterborne contamination analysis. Biosensors 9(3). https://doi.org/10.3390/bios9030096

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34(2):292–308

    Article  CAS  Google Scholar 

  • Araujo CF, Nolasco MM, Ribeiro AMP, Ribeiro-Claro PJA (2018) Identification of microplastics using Raman spectroscopy: latest developments and future prospects. Water Res 142:426–440. https://doi.org/10.1016/j.watres.2018.05.060

    Article  CAS  PubMed  Google Scholar 

  • Assaf A, Cordella CBY, Thouand G (2014) Raman spectroscopy applied to the horizontal methods ISO 6579:2002 to identify Salmonella Spp. in the food industry. Anal Bioanal Chem 406(20):4899–4910. https://doi.org/10.1007/s00216-014-7909-2

    Article  CAS  PubMed  Google Scholar 

  • Atkins PW (2010) Shriver & Atkins’ inorganic chemistry. W.H. Freeman, New York

    Google Scholar 

  • Ayala OD, Wakeman CA, Pence IJ, Gaddy JA, Slaughter JC, Skaar EP, Mahadevan-Jansen A (2018) Drug-resistant Staphylococcus aureus strains reveal distinct biochemical features with Raman microspectroscopy. ACS Infect Dis 4(8):1197–1210. https://doi.org/10.1021/acsinfecdis.8b00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Israel O, Ben-Israel H, Ulitzur S (1998) Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Appl Environ Microbiol 64(11):4346–4352

    Article  CAS  Google Scholar 

  • Bereza-Malcolm LT, Mann G, Franks AE (2015) Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth Biol 4(5):535–546. https://doi.org/10.1021/sb500286r

    Article  CAS  PubMed  Google Scholar 

  • Bittel M, Cordella CBY, Assaf A, Jouanneau S, Durand MJ, Thouand G (2015a) Potential of Raman spectroscopy to monitor arsenic toxicity on bacteria: insights toward multiparametric bioassays. Environ Sci Technol 49(20):12324–12332. https://doi.org/10.1021/acs.est.5b03013

    Article  CAS  PubMed  Google Scholar 

  • Bittel M et al (2015b) Potential of Raman spectroscopy to monitor arsenic toxicity on bacteria: insights toward multiparametric bioassays. PubMed – NCBI. https://www.ncbi.nlm.nih.gov/pubmed/26398864. Accessed 24 Mar 2020

  • Briscoe SF, Diorio C, DuBow MS (1996) Luminescent biosensors for the detection of tributyltin and dimethyl sulfoxide and the elucidation of their mechanisms of toxicity. Environ Biotechnol 645–655. https://doi.org/10.1007/978-94-017-1435-8

  • Bulich AA (1982) A practical and reliable method for monitoring the toxicity of aquatic samples. Process Biochem 17(2):45–47

    Google Scholar 

  • Bumbrah GS, Sharma RM (2016) Raman spectroscopy – basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci 6(3):209–215. https://doi.org/10.1016/j.ejfs.2015.06.001

    Article  Google Scholar 

  • Charrier T, Chapeau C, Bendria L, Picart P, Daniel P, Thouand G (2011) A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: Technical development and proof of concept of the biosensor. Anal Bioanal Chem 400(4): 1061–1070

    Article  CAS  Google Scholar 

  • Christophoridis C, Dedepsidis D, Fytianos K (2009) Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J Hazard Mater 168(2–3):1082–1091

    Article  CAS  Google Scholar 

  • Corbisier P, Ji G, Nuyts G, Mergeay M, Silver S (1993) LuxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid PI258. FEMS Microbiol Lett 110(SV):231–238

    Article  CAS  Google Scholar 

  • Corbisier P, Van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csoregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387(3):235–244

    Article  CAS  Google Scholar 

  • Cornils B, Herrmann WA (eds) (2002) Applied homogeneous catalysis with organometallic compounds, 1st edn. Wiley. https://doi.org/10.1002/9783527618231

  • Cox PA (2004) Inorganic chemistry. In: Instant notes, 2nd edn. BIOS Scientific, Oxford

    Google Scholar 

  • Dameron C, International Programme on Chemical Safety (eds) (1998) Copper. Environmental health criteria. World Health Organization, Geneva

    Google Scholar 

  • Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7):2705–2738. https://doi.org/10.1021/cr990115p

    Article  CAS  PubMed  Google Scholar 

  • Duffus JH (2002) “Heavy metals” a meaningless term? (IUPAC technical report). Pure Appl Chem 74(5):793–807. https://doi.org/10.1351/pac200274050793

    Article  CAS  Google Scholar 

  • Durand MJ, Thouand G, Dancheva-Ivanova T, Vachon P, DuBow M (2003) Specific detection of organotin compounds with a recombinant luminescent bacteria. Chemosphere 52(1):103–111

    Article  CAS  Google Scholar 

  • Elad T, Benovich E, Magrisso S, Belkin S (2008) Toxicant identification by a luminescent bacterial bioreporter panel: application of pattern classification algorithms. Environ Sci Technol 42(22):8486–8491

    Article  CAS  Google Scholar 

  • Fan C, Gao Y, Du B (2016) [Response of FTIR and Raman spectra on cell wall of calendula officinalis seedlings roots to the co-contamination stress of lead and cadmium in loess]. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 36(7):2076–2081

    Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, Gamero-Melo P, Luna-Suárez S, Aguilera-González EN, Martínez AI, García-Guillermo MDS, Hernández-Martínez G, Herrera-Mendoza R, Álvarez-Garza MA, Pérez-Velázquez IR (2013) Heavy metal pollution in drinking water – a global risk for human health: a review. Afr J Environ Sci Technol 7(7):567–584

    Google Scholar 

  • Galli R, Preusse G, Schnabel C, Bartels T, Cramer K, Krautwald-Junghanns M-E, Koch E, Steiner G (2018) Sexing of chicken eggs by fluorescence and Raman spectroscopy through the shell membrane. PLoS One 13(2):e0192554. https://doi.org/10.1371/journal.pone.0192554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam R, Vanga S, Ariese F, Umapathy S (2015) Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech Instrum 2(1):1–38. https://doi.org/10.1140/epjti/s40485-015-0018-6

    Article  CAS  Google Scholar 

  • Gomes da Costa S, Richter A, Schmidt U, Breuninger S, Hollricher O (2019) Confocal Raman microscopy in life sciences. Morphologie 103(341):11–16. https://doi.org/10.1016/j.morpho.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  • Gu MB, Dhurjati PS, Van Dyk TK, LaRossa RA (1996) A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells. Biotechnol Prog 12(3):393–397. https://doi.org/10.1021/bp9600142

    Article  CAS  PubMed  Google Scholar 

  • Gu MB, Gil GC, Kim JH (1999) A two-stage minibioreactor system for continuous toxicity monitoring. Biosens Bioelectron 14(4):355–361

    Article  CAS  Google Scholar 

  • Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305

    CAS  PubMed  Google Scholar 

  • Gueune H, Durand MJ, Thouand G, DuBow MS (2008) The YgaVP genes of Escherichia coli form a tributyltin-inducible operon. Appl Environ Microbiol 74(6):1954–1958

    Article  CAS  Google Scholar 

  • Gueune H, Thouand G, Durand MJ (2009) A new bioassay for the inspection and identification of TBT-containing antifouling paint. Mar Pollut Bull 58(11):1734–1738

    Article  CAS  Google Scholar 

  • Guzzo A, Diorio C, DuBow MS (1991) Transcription of the Escherichia coli FliC gene is regulated by metal ions. Appl Environ Microbiol 57(8):2255–2259

    Article  CAS  Google Scholar 

  • Hakkila K, Maksimow M, Karp M, Virta M (2002) Reporter genes LucFF, LuxCDABE, Gfp, and Dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301(2): 235–242

    Article  CAS  Google Scholar 

  • Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24(5):333–342

    Article  CAS  Google Scholar 

  • Harz M, Rösch P, Popp J (2009) Vibrational spectroscopy-A powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75(2):104–113. https://doi.org/10.1002/cyto.a.20682

    Article  CAS  PubMed  Google Scholar 

  • Herrmann WA (2008) Ferrocene as a gasoline and fuel additive. In: Applied homogeneous catalysis with organometallic compounds. Wiley, pp 586–590. https://doi.org/10.1002/9783527618231.ch2j

  • Ho C-S, Jean N, Hogan CA, Blackmon L, Jeffrey SS, Holodniy M, Banaei N, Saleh AAE, Ermon S, Dionne J (2019) Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat Commun 10(1). https://doi.org/10.1038/s41467-019-12898-9

  • Horry H, Durand MJ, Picart P, Bendriaa L, Daniel P, Thouand G (2004) Development of a biosensor for the detection of tributyltin. Environ Toxicol 19(4):342–345

    Article  CAS  Google Scholar 

  • Horry H, Charrier T, Durand MJ, Vrignaud B, Picart P, Daniel P, Thouand G (2007) Technological conception of an optical biosensor with a disposable card for use with bioluminescent bacteria. Sens Actuators B Chem 122(2):527–534

    Article  CAS  Google Scholar 

  • http://eaufrance.fr/chiffres-cles http://www.assainissement.developpement-durable.gouv.fr/recueil/01_TF/Dir%20substances%202013-39-UE.pdf. Accessed 20 May 2020

  • Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9:41

    Article  Google Scholar 

  • Jaiser SR, Winston GP (2010) Copper deficiency myelopathy. J Neurol 257(6):869–881. https://doi.org/10.1007/s00415-010-5511-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanneau S, Thouand G (2019) Biocapteurs pour la surveillance des polluants dans l’environnement. No. ref. article: chv1620

    Google Scholar 

  • Jouanneau S, Durand M-J, Courcoux P, Blusseau T, Thouand G (2011) Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ Sci Technol 45(7): 2925–2931. https://doi.org/10.1021/es1031757

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau S, Durand MJ, Thouand G (2012) Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Environ Sci Technol 46(21): 11979–11987. https://doi.org/10.1021/es3024918

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau S, Durand MJ, Lahmar A, Thouand G (2016) Main technological advancements in bacterial bioluminescent biosensors over the last two decades. In: Thouand G, Marks R (eds) Bioluminescence: fundamentals and applications in biotechnology. Advances in biochemical engineering/biotechnology, vol 3. Springer International Publishing, Cham, pp 101–116. https://doi.org/10.1007/10_2015_333

    Chapter  Google Scholar 

  • Jung GB, Nam SW, Choi S, Lee G-J, Park H-K (2014) Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis. Biomed Opt Express 5(9):3238–3251. https://doi.org/10.1364/BOE.5.003238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabiersch G, Rajasärkkä J, Tuomela M, Hatakka A, Virta M, Steffen K (2013) Bioluminescent yeast assay for detection of organotin compounds. Anal Chem 85(12):5740–5745. https://doi.org/10.1021/ac4003062

    Article  CAS  PubMed  Google Scholar 

  • Knief P, Clarke C, Herzog E, Davoren M, Lyng FM, Meade AD, Byrne HJ (2009) Raman spectroscopy – a potential platform for the rapid measurement of carbon nanotube-induced cytotoxicity. Analyst 134(6):1182–1191. https://doi.org/10.1039/B821393C

    Article  CAS  PubMed  Google Scholar 

  • Köhler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366(6):769–779

    PubMed  Google Scholar 

  • Kuhar N, Sil S, Verma T, Umapathy S (2018) Challenges in application of Raman spectroscopy to biology and materials. RSC Adv 8(46):25888–25908. https://doi.org/10.1039/c8ra04491k

    Article  CAS  Google Scholar 

  • Lewis JC, Feltus A, Ensor CM, Ramanathan S, Daunert S (1998) Peer reviewed: applications of reporter genes. Anal Chem 70(17):579A–585A. https://doi.org/10.1021/ac9819638

    Article  CAS  PubMed  Google Scholar 

  • Lieutaud C, Assaf A, Gonçalves O, Wielgosz-Collin G, Thouand G (2019) Fast non-invasive monitoring of microalgal physiological stage in photobioreactors through Raman spectroscopy. Algal Res 42:101595. https://doi.org/10.1016/j.algal.2019.101595

    Article  Google Scholar 

  • Liu Y, Zhang Y, Jiang L (2015) Detection of heavy metal copper in vetiver grass roots based on Raman spectroscopy and resin adsorption technology. Nongye Gongcheng XuebaoTransactions Chin Soc Agric Eng 31:174–178. https://doi.org/10.11975/j.issn.1002-6819.2015.24.026

  • Liu D, Wan J, Liu Z, Zhao Z, Zhang G, Leng Y (2020) Determination of cadmium induced acute and chronic reproductive toxicity with Raman spectroscopy | SpringerLink. https://link.springer.com/article/10.1007/s10103-020-02976-6. Accessed 24 Mar 2020

  • López-Díez EC, Winder CL, Ashton L, Currie F, Goodacre R (2005) Monitoring the mode of action of antibiotics using Raman spectroscopy: investigating subinhibitory effects of amikacin on Pseudomonas aeruginosa. Anal Chem 77(9):2901–2906. https://doi.org/10.1021/ac048147m

    Article  CAS  PubMed  Google Scholar 

  • Magrisso S, Erel Y, Belkin S (2008) Microbial reporters of metal bioavailability. Microb Biotechnol 1(4):320–330

    Article  CAS  Google Scholar 

  • Maquelin K, Kirschner C, Choo-Smith L-P, van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51(3):255–271. https://doi.org/10.1016/s0167-7012(02)00127-6

    Article  CAS  PubMed  Google Scholar 

  • Meighen EA (1993) Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J 7(11):1016–1022

    Article  CAS  Google Scholar 

  • Mlynáriková K, Samek O, Bernatová S, Růžička F, Ježek J, Hároniková A, Šiler M, Zemánek P, Holá V (2015) Influence of culture media on microbial fingerprints using Raman spectroscopy. Sensors 15(11):29635–29647. https://doi.org/10.3390/s151129635

    Article  PubMed  PubMed Central  Google Scholar 

  • Monakhova Y, Rutledge D (2019) Independent components analysis (ICA) at the “cocktail-party” in analytical chemistry. Talanta 208:120451. https://doi.org/10.1016/j.talanta.2019.120451

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee R, Verma T, Nandi D, Umapathy S (2020) Understanding the effects of culture conditions in bacterial growth: a biochemical perspective using Raman microscopy. J Biophotonics 13(1):e201900233. https://doi.org/10.1002/jbio.201900233

    Article  CAS  PubMed  Google Scholar 

  • Nagel B, Dellweg H, Gierasch LM (1992) Glossary for chemists of terms used in biotechnology (IUPAC recommendations 1992). Pure Appl Chem 64(1):143–168. https://doi.org/10.1351/pac199264010143

    Article  CAS  Google Scholar 

  • Neugebauer U, Rösch P, Popp J (2015) Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int J Antimicrob Agents 46:S35–S39. https://doi.org/10.1016/j.ijantimicag.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  • Pieters S, Vander Heyden Y, Roger J-M, D’Hondt M, Hansen L, Palagos B, De Spiegeleer B, Remon J-P, Vervaet C, De Beer T (2013) Raman spectroscopy and multivariate analysis for the rapid discrimination between native-like and non-native states in freeze-dried protein formulations. Eur J Pharm Biopharm 85(2):263–271. https://doi.org/10.1016/j.ejpb.2013.03.035

    Article  CAS  PubMed  Google Scholar 

  • Preston S, Coad N, Townend J, Killham K, Paton GI (2000) Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic? Environ Toxicol Chem 19(3): 775–780. https://doi.org/10.1002/etc.5620190332

    Article  CAS  Google Scholar 

  • Puppels GJ, Olminkhof JHF, Segers-Nolten GMJ, Otto C, de Mul FFM, Greve J (1991) Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light. Exp Cell Res 195(2):361–367. https://doi.org/10.1016/0014-4827(91)90385-8

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Yang Y, Zhao J, Tao R, Xu R (2013) Influence of urbanization and industrialization on metal enrichment of sediment cores from Shantou Bay, South China. Environ Pollut 182:28–36

    Article  CAS  Google Scholar 

  • Radić DS, Pavlović VP, Lazović MM, Jovičić-Petrović JP, Karličić VM, Lalević BT, Raičević VB (2017) Copper-tolerant yeasts: Raman spectroscopy in determination of bioaccumulation mechanism. Environ Sci Pollut Res 24:21885–21893. PubMed – NCBI. https://www.ncbi.nlm.nih.gov/pubmed/28779342. Accessed 24 Mar 2020

    Article  Google Scholar 

  • Roda A, Roda B, Cevenini L, Michelini E, Mezzanotte L, Reschiglian P, Hakkila K, Virta M (2011) Analytical strategies for improving the robustness and reproducibility of bioluminescent microbial bioreporters. Anal Bioanal Chem 401(1):201–211

    Article  CAS  Google Scholar 

  • Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59(9):3083–3090

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38(12):228A–231A

    Article  CAS  Google Scholar 

  • Serat WF, Budinger FE, Mueller PK (1965) Evaluation of biological effects of air pollutants by use of luminescent bacteria. J Bacteriol 90(3):832–833

    Article  CAS  Google Scholar 

  • Serat WF, Budinger FE, Mueller PK (1967) Toxicity evaluation of air pollutants by use of luminescent bacteria. Atmos Environ 1(1):21–32. https://doi.org/10.1016/0004-6981(67)90105-9

    Article  CAS  Google Scholar 

  • Shen R et al (2019) Ex vivo detection of cadmium-induced renal damage by using confocal Raman spectroscopy. J Biophotonics. Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.201900157. Accessed 24 Mar 2020

  • Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Paulus MJ, Jellison GE (1998) Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol 16(8):332–338

    Article  CAS  Google Scholar 

  • Smith R, Wright KL, Ashton L (2016) Raman spectroscopy: an evolving technique for live cell studies. Analyst 141(12):3590–3600. https://doi.org/10.1039/C6AN00152A

    Article  CAS  PubMed  Google Scholar 

  • Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37(20):4743–4750

    Article  CAS  Google Scholar 

  • Tao F, Ngadi M (2018) Recent advances in rapid and nondestructive determination of fat content and fatty acids composition of muscle foods. Crit Rev Food Sci Nutr 58(9):1565–1593. https://doi.org/10.1080/10408398.2016.1261332

    Article  CAS  PubMed  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  CAS  Google Scholar 

  • Ulitzur S, Barak M (1988) Detection of genotoxicity of metallic compounds by the bacterial bioluminescence test. J Biolumin Chemilumin 2(2):95–99

    Article  CAS  Google Scholar 

  • US EPA (2019) Analytical methods approved for drinking water compliance monitoring of inorganic contaminants and other inorganic constituents. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100WD2D.txt. Accessed 6 Jan 2020

  • Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18(2):121–129

    Article  CAS  Google Scholar 

  • Walter A et al (2012) Raman spectroscopic detection of Nickel impact on single Streptomyces cells – possible bioindicators for heavy metal contamination. J Raman Spectrosc. Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/jrs.3126. Accessed 24 Mar 2020

  • Yang D, Ying Y (2011) Applications of Raman spectroscopy in agricultural products and food analysis: a review. Appl Spectrosc Rev 46(7):539–560. https://doi.org/10.1080/05704928.2011.593216

    Article  Google Scholar 

  • Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM (2019) The essential metals for humans: a brief overview. J Inorg Biochem 195:120–129. https://doi.org/10.1016/j.jinorgbio.2019.03.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Assaf .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jouanneau, S., Assaf, A., Durand, MJ., Thouand, G. (2022). Detection and Effects of Metal and Organometallic Compounds with Microbial Bioluminescence and Raman Spectroscopy. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-030-23217-7_90

Download citation

Publish with us

Policies and ethics