Skip to main content

Validation of Equilibrated Warping—Image Registration with Mechanical Regularization—On 3D Ultrasound Images

  • Conference paper
  • First Online:
Book cover Functional Imaging and Modeling of the Heart (FIMH 2019)

Abstract

Image registration plays a very important role in quantifying cardiac motion from medical images, which has significant implications in the diagnosis of cardiac diseases and the development of personalized cardiac computational models. Many approaches have been proposed to solve the image registration problem; however, due to the intrinsic ill-posedness of the image registration problem, all these registration techniques, regardless of their variabilities, require some sort of regularization. An efficient regularization approach was recently proposed based on the equilibrium gap principle, named equilibrated warping. Compared to previous work, it has been formulated at the continuous level within the finite strain hyperelasticity framework and solved using the finite element method. Regularizing the image registration problem using this principle is advantageous as it produces a realistic solution that is close to that of an hyperelastic body in equilibrium with arbitrary boundary tractions, but no body load.The equilibrated warping method has already been extensively validated on both tagged and untagged magnetic resonance images. In this paper, we provide full validation of the method on 3D ultrasound images, based on the 2011 MICCAI Motion Tracking Challenge data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.fenicsproject.org.

  2. 2.

    https://www.vtk.org.

  3. 3.

    https://gitlab.inria.fr/mgenet/dolfin_dic.

  4. 4.

    https://www.cardiacatlas.org/challenges/motion-tracking-challenge.

References

  1. Bornert, M., et al.: Digital image correlation. In: Grédiac, M., et al.: Full-Field Measurements and Identification in Solid Mechanics. Wiley, Hoboken (2012). https://doi.org/10.1002/9781118578469.ch6

    Chapter  Google Scholar 

  2. Chabiniok, R., et al.: Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech. Model. Mechanobiol. 11(5), 609–630 (2012). https://doi.org/10.1007/s10237-011-0337-8

    Article  Google Scholar 

  3. Christensen, G.E., et al.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996). https://doi.org/10.1109/83.536892

    Article  MathSciNet  Google Scholar 

  4. Claire, D., et al.: A finite element formulation to identify damage fields: the equilibrium gap method. Int. J. Numer. Methods Eng. 61(2), 189–208 (2004). https://doi.org/10.1002/nme.1057

    Article  MATH  Google Scholar 

  5. Finsberg, H., et al.: Efficient estimation of personalized biventricular mechanical function employing gradient-based optimization. Int. J. Numer. Methods Biomed. Eng. 34(7), e2982 (2018). https://doi.org/10.1002/cnm.2982

    Article  MathSciNet  Google Scholar 

  6. Genet, M., et al.: A novel method for quantifying smooth regional variations in myocardial contractility within an infarcted human left ventricle based on delay-enhanced magnetic resonance imaging. J. Biomech. Eng. 137(8), 081009 (2015). https://doi.org/10.1115/1.4030667

    Article  Google Scholar 

  7. Genet, M., et al.: Equilibrated warping: finite element image registration with finite strain equilibrium gap regularization. Med. Image Anal. 50, 1–22 (2018). https://doi.org/10.1016/j.media.2018.07.007

    Article  Google Scholar 

  8. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  9. Krishnamurthy, A., et al.: Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013). https://doi.org/10.1016/j.jcp.2012.09.015

    Article  Google Scholar 

  10. Leclerc, H., Périé, J.-N., Roux, S., Hild, F.: Integrated digital image correlation for the identification of mechanical properties. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2009. LNCS, vol. 5496, pp. 161–171. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01811-4_15

    Chapter  Google Scholar 

  11. Logg, A., et al.: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Lecture Notes in Computational Science and Engineering, p. 723. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23099-8

    MATH  Google Scholar 

  12. Mansi, T., et al.: iLogDemons: a demons-based registration algorithm for tracking incompressible elastic biological tissues. Int. J. Comput. Vis. 92(1), 92–111 (2011). https://doi.org/10.1007/s11263-010-0405-z

    Article  MathSciNet  Google Scholar 

  13. Moireau, P., et al.: Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mech. Eng. 197(6–8), 659–677 (2008). https://doi.org/10.1016/j.cma.2007.08.021

    Article  MathSciNet  MATH  Google Scholar 

  14. Rausch, M.K., et al.: A virtual sizing tool for mitral valve annuloplasty. Int. J. Numer. Methods Biomed. Eng. 33(2), e02788 (2017). https://doi.org/10.1002/cnm.2788

    Article  Google Scholar 

  15. Schroeder, W., et al.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn, p. 512. Kitware Inc, Clifton Park (2006)

    Google Scholar 

  16. Sermesant, M., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012). https://doi.org/10.1016/j.media.2011.07.003

    Article  Google Scholar 

  17. Tobon-Gomez, C., et al.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med. Image Anal. 17(6), 632–648 (2013). https://doi.org/10.1016/j.media.2013.03.008

    Article  Google Scholar 

  18. Veress, A.I., et al.: Measurement of strain in the left ventricle during diastole with cine-MRI and deformable image registration. J. Biomech. Eng. 127(7), 1195–1207 (2005). https://doi.org/10.1115/1.2073677

    Article  Google Scholar 

  19. Wang, H., et al.: Cardiac motion and deformation recovery from MRI: a review. IEEE Trans. Med. Imaging 31(2), 487–503 (2012). https://doi.org/10.1109/TMI.2011.2171706

    Article  Google Scholar 

  20. Xi, C., et al.: Patient-specific computational analysis of ventricular mechanics in pulmonary arterial hypertension. J. Biomech. Eng. 138(11), 111001 (2016). https://doi.org/10.1115/1.4034559

    Article  Google Scholar 

  21. Zou, H., et al.: Quantification of biventricular strains in heart failure with preserved ejection fraction patient using hyperelastic warping method. Front. Physiol. (2018). https://doi.org/10.3389/fphys.2018.01295

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Genet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, L.C., Genet, M. (2019). Validation of Equilibrated Warping—Image Registration with Mechanical Regularization—On 3D Ultrasound Images. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics