Skip to main content

Modeling Cardiac Growth: An Alternative Approach

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11504))

Abstract

Models of cardiac growth might assist in clinical decision making, in particular for long-term prognosis of the effect of interventions. Most growth models strictly enforce the amount and direction of volume change and prevent runaway growth by limiting maximum growth. These assumptions have been questioned. We propose an alternative model for cardiac growth, in which the actual volume change of a tissue element is determined by the desired volume change in that element and the degree to which this change is resisted by the surrounding tissue. The model was evaluated on its ability to reproduce a stable healthy left ventricular configuration under normal hemodynamic load. A homeostatic equilibrium state could not be obtained, which might be due to limitations in the mechanics model or an inadequate stimulus-effect relation in the growth model. Still, the basic idea underlying the model could be an interesting alternative to current growth models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bovendeerd, P.H.M., Kroon, J.W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. 297, H1058–H1068 (2009)

    Google Scholar 

  2. Göktepe, S., Abilez, O.J., Parker, K.K., Kuhl, E.: A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J. Theor. Biol. 265, 433–442 (2010)

    Article  Google Scholar 

  3. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Meth. Appl. Sci. 12, 407–430 (2002)

    Article  MathSciNet  Google Scholar 

  4. Kerckhoffs, R.C.P., Bovendeerd, P.H.M., Prinzen, F.W., Smits, K., Arts, T.: Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart. Eng. Math. 47, 201–216 (2003)

    Article  MathSciNet  Google Scholar 

  5. Kerckhoffs, R.C.P., Omens, J.H., McCulloch, A.D.: A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech. Res. Commun. 42, 40–50 (2012)

    Article  Google Scholar 

  6. Kroon, W., Delhaas, T., Arts, T., Bovendeerd, P.H.M.: Constitutive modeling of cardiac tissue growth. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 340–349. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72907-5_35

    Chapter  Google Scholar 

  7. Kroon, W., Delhaas, T., Bovendeerd, P.H.M., Arts, T.: Computational analysis of the myocardial structure: adaptation of cardiac myofiber orientations through deformation. Med. Image Anal. 13, 346–353 (2009)

    Article  Google Scholar 

  8. van Oosterhout, M.F.M., et al.: Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation 98, 588–595 (1998)

    Article  Google Scholar 

  9. Pluijmert, M.H., Delhaas, T., Flores de la Parra, A., Kroon, W., Prinzen, F.W., Bovendeerd, P.H.M.: Determinants of biventricular cardiac function: a mathematical model study on geometry and myofiber orientation. Biomech. Mod. Mechanobiol. 16, 721–729 (2017)

    Article  Google Scholar 

  10. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  11. Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullumeijer, P., Vilmann, H.: Analytical description of growth. J. Theor. Biol. 94, 555–577 (1982)

    Article  MathSciNet  Google Scholar 

  12. Witzenburg, C.M., Holmes, J.W.: A comparison of phenomenologic growth laws for myocardial hypertrophy. J. Elast. 129, 257–281 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bovendeerd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Osta, N., van der Donk, L., Rondanina, E., Bovendeerd, P. (2019). Modeling Cardiac Growth: An Alternative Approach. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics