Skip to main content

Transcriptomic Approaches to Modelling Long Term Changes in Human Cardiac Electrophysiology

  • Conference paper
  • First Online:
  • 1311 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11504))

Abstract

Slow changes in the activity of the heart occur with time scales from days through to decades, and may in part result from changes in cardiomyocyte properties. The cellular mechanisms of the cardiomyocyte action potential have time scales from < ms to hundreds of ms. Although the quantitative dynamic relations between mRNA transcription, protein synthesis, trafficking, recycling, and membrane protein activity are unclear, mRNA-Seq can be used to inform parameters in cell excitation equations. We use such transcriptomic data from a non-human primate to scale maximal conductances in the O’Hara-Rudy (2011) family of human ventricular cell models, and to predict diurnal changes in human ventricular action potential durations. These are related to circadian changes in the incidence of sudden cardiac deaths. Transcriptomic analysis of human fetal hearts between 9 and 16 weeks gestational age is beginning to be used to inform ventricular cell and tissue models of the electrophysiology of the developing fetal heart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holzem, K.M., Madden, E.J., Efimov, I.R.: Human cardiac systems electrophysiology and arrhythmogenesis. Europace 16(Suppl 4), iv77–iv85 (2014)

    Article  Google Scholar 

  2. Curran, J., Mohler, P.J.: Alternative paradigms for channelopathies. Ann. Rev. Physiol. 77, 505–524 (2015)

    Article  Google Scholar 

  3. Schwanhäusser, B., et al.: Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011)

    Article  Google Scholar 

  4. Chandler, N.J., et al.: Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation 119(12), 1562–1575 (2009)

    Article  Google Scholar 

  5. Boyett, M.R.: ‘And the beat goes on’ The cardiac conduction system: the wiring system of the heart. Exp. Physiol. 94(10), 1035–1049 (2009)

    Article  Google Scholar 

  6. Atia, J., et al.: Reconstruction of cell surface densities of ion pumps, exchangers, and channels from mRNA expression, conductance kinetics, whole-cell calcium, and current-clamp voltage recordings. PloS Comput. Biol. 12(4), e1004828 (2016)

    Google Scholar 

  7. Chan, Y., et al.: Assessment of myometrial transcriptome changes associated with spontaneous human labour by high-throughput RNA-seq. Exp. Physiol. 99(3), 510–524 (2014)

    Article  Google Scholar 

  8. Black, N., et al.: Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms Heart Rhythm 16(2), 298–307 (2018)

    Article  Google Scholar 

  9. Arntz, H.-R., et al.: Diurnal, weekly and seasonal variation of sudden death. Eur. Heart J. 21(4), 315–320 (2000)

    Article  Google Scholar 

  10. Willich, S.N., et al.: Circadian variation in the incidence of sudden cardiac death in the framingham heart study population. Am. J. Cardiol. 60(10), 803–804 (1987)

    Article  Google Scholar 

  11. Tofler, G.H., et al.: Morning peak in ventricular tachyarrhythmias detected by time of implantable cardioverter/defibrillator therapy. Circulation 92, 1203–1208 (1995)

    Article  Google Scholar 

  12. Gang, Y., et al.: Circadian variation of the ST interval in patients with sudden cardiac death after myocardial infarction. Am. J. Cardiol. 81, 950–956 (1998)

    Article  Google Scholar 

  13. Bonnemeier, H., et al.: Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J. Cardiovasc. Electrophysiol. 14, 791–799 (2003)

    Article  Google Scholar 

  14. West, A.C., et al.: Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nature Commun. 18, 417 (2017). https://doi.org/10.1038/s41467-017-00462-2

  15. Crnko, S., et al.: Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nature Rev. Cardiol. (2019). https://doi.org/10.1038/s41569-019-0167-4

  16. Mure, L.S., et al.: Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359, eaao0318 (2018)

    Article  Google Scholar 

  17. Wu, G., et al.: MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinformatics 32, 3351–3353 (2016)

    Article  Google Scholar 

  18. Pervolaraki, E., et al.: The developmental transcriptome of the human heart. Sci Rep. 8(1), 15362 (2018)

    Google Scholar 

  19. O’Hara, T., Virag, L., Varro, A., Rudy, Y.: Simulation of the undiseased human cardiac ventricular action potential. PLoS Comput. Biol. 7, e1002061 (2011)

    Article  Google Scholar 

  20. Pervolaraki, E., Dachtler, J., Anderson, R.A., Holden, A.V.: Ventricular myocardium development and the role of connexins in the human fetal heart. Sci Rep. 7(1), 12272 (2017)

    Article  Google Scholar 

  21. Pervolaraki, E., et al.: Antenatal architecture and activity of the human heart. Interface Focus. 3(2), 20120065 (2013). https://doi.org/10.1098/rsfs.2012.0065

    Article  Google Scholar 

  22. Pervolaraki, E., Hodgson, S., Holden, A.V., Benson, A.P.: Towards computational modelling of the human foetal electrocardiogram: normal sinus rhythm and congenital heart block. Europace 16(5), 758–765 (2014). https://doi.org/10.1093/europace/eut377

    Article  Google Scholar 

Download references

Acknowledgements

F.B. was supported by an ERAMUS + traineeship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun V. Holden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bayraktar, F., Benson, A.P., Holden, A.V., Pervolaraki, E. (2019). Transcriptomic Approaches to Modelling Long Term Changes in Human Cardiac Electrophysiology. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics