Skip to main content

Fluids, Nutrition, and Acute Kidney Injury in Pediatric Acute Respiratory Distress Syndrome

  • Chapter
  • First Online:
Book cover Pediatric Acute Respiratory Distress Syndrome

Abstract

Fluid and nutrition support are essential components of intensive care management of children with pediatric acute respiratory distress syndrome (PARDS) with well-recognized associations with patient outcome. As liberal fluid administration is associated with fluid accumulation and, in turn, worse oxygenation, adequate nutrition delivery could potentially create a competing goal. However, receipt of a higher proportion of goal energy and protein is associated with improved patient outcome in PARDS. Nutrition support is often limited or fails to meet energy and protein goals due to delayed initiation of feeds, interruptions for ICU procedures, feeding intolerance, and to prevent or manage existing fluid overload. Despite contrary evidence, additional restriction of daily protein delivery often accompanies restrictive fluid management for children with severe PARDS with acute kidney injury (AKI). The balanced management of nutritional status, fluid overload, and AKI presents unique challenges when caring for children with PARDS. Careful multidisciplinary team-based care is necessary to prescribe guideline-recommended minimum macronutrient needs to preserve lean body mass and optimize respiratory muscle function, to avoid fluid overload, and coordinate care for AKI. American Society for Parenteral and Enteral Nutrition (ASPEN) and Society of Critical Care Medicine (SCCM) recommendations for provision of nutrition in critically ill children include (1) early screening of nutritional status to identify patients at high nutritional risk; (2) use of predictive equations to determine energy requirements without the addition of stress factors when indirect calorimetry (IC) is not available; (3) target energy for the first week of critical illness should be at least 2/3 of total energy requirements; (4) minimum protein delivery is 1.5 g/kg/day; (5) enteral nutrition (EN) is the preferred route of nutrition delivery, should be initiated within 24–48 hours of ICU admission, and should be advanced by a stepwise institutional algorithm; and (6) parenteral nutrition (PN) should be delayed at least 24 hours after ICU admission and initiated only for children who cannot be fed enterally during their first week of ICU stay, or for children with baseline high nutritional risk who cannot tolerate more than low volumes of EN. Current nutritional guidelines recommend modest energy goals, and with the possibility of low-volume protein supplementation, it is possible to achieve goal nutrition and avoid fluid overload due to nutrition delivery in most patients. Therapies currently used to treat and manage fluid overload in PARDS with and without AKI include fluid restriction, diuretics, and continuous or intermittent renal replacement therapies. Careful monitoring of protein tolerance, but not protein restriction, is needed in the setting of AKI. If renal replacement therapies are needed for AKI, optimal nutrition delivery should take into account dialysis-associated nutrient losses. In this chapter, we will review the principles of management for fluid, nutrition, and AKI in children with PARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Academy of Pediatrics. Committee on Nutrition, Barness LA. Pediatric nutrition handbook. 6th ed. Elk Grove Village: American Academy of Pediatrics; 2009.

    Google Scholar 

  2. Mehta NM, Bechard LJ, Zurakowski D, Duggan CP, Heyland DK. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mehta NM, Bechard LJ, Cahill N, et al. Nutritional practices and their relationship to clinical outcomes in critically ill children--an international multicenter cohort study∗. Crit Care Med. 2012;40(7):2204–11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wong JJ, Han WM, Sultana R, Loh TF, Lee JH. Nutrition delivery affects outcomes in pediatric acute respiratory distress syndrome. JPEN J Parenter Enteral Nutr. 2017;41(6):1007–13.

    Article  PubMed  Google Scholar 

  5. de Neef M, Geukers VG, Dral A, Lindeboom R, Sauerwein HP, Bos AP. Nutritional goals, prescription and delivery in a pediatric intensive care unit. Clin Nutr. 2008;27(1):65–71.

    Article  PubMed  Google Scholar 

  6. Hulst J, Joosten K, Zimmermann L, et al. Malnutrition in critically ill children: from admission to 6 months after discharge. Clin Nutr. 2004;23(2):223–32.

    Article  PubMed  Google Scholar 

  7. Hulst JM, Joosten KF, Tibboel D, van Goudoever JB. Causes and consequences of inadequate substrate supply to pediatric ICU patients. Curr Opin Clin Nutr Metab Care. 2006;9(3):297–303.

    Article  PubMed  Google Scholar 

  8. Malakouti A, Sookplung P, Siriussawakul A, et al. Nutrition support and deficiencies in children with severe traumatic brain injury. Pediatr Crit Care Med. 2012;13(1):e18–24.

    Article  PubMed  Google Scholar 

  9. Mehta NM, McAleer D, Hamilton S, et al. Challenges to optimal enteral nutrition in a multidisciplinary pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2010;34(1):38–45.

    Article  PubMed  Google Scholar 

  10. Pollack MM, Ruttimann UE, Wiley JS. Nutritional depletions in critically ill children: associations with physiologic instability and increased quantity of care. JPEN J Parenter Enteral Nutr. 1985;9(3):309–13.

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein SL, Basu RK, Kaddourah A. Acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(13):1295–6.

    PubMed  Google Scholar 

  12. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, Investigators A. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20.

    Article  PubMed  Google Scholar 

  13. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.

    Article  CAS  PubMed  Google Scholar 

  14. Abulebda K, Cvijanovich NZ, Thomas NJ, et al. Post-ICU admission fluid balance and pediatric septic shock outcomes: a risk-stratified analysis. Crit Care Med. 2014;42(2):397–403.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alobaidi R, Morgan C, Basu RK, et al. Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257–68.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Arikan AA, Zappitelli M, Goldstein SL, Naipaul A, Jefferson LS, Loftis LL. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13(3):253–8.

    Article  PubMed  Google Scholar 

  17. Willson DF, Thomas NJ, Tamburro R, et al. The relationship of fluid administration to outcome in the pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med. 2013;14(7):666–72.

    Article  PubMed  Google Scholar 

  18. Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004;19(12):1394–9.

    Article  PubMed  Google Scholar 

  19. Foland JA, Fortenberry JD, Warshaw BL, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771–6.

    Article  PubMed  Google Scholar 

  20. Goldstein SL, Somers MJ, Baum MA, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    Article  PubMed  Google Scholar 

  21. Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24(3):394–400.

    Article  PubMed  Google Scholar 

  22. Valentine SL, Sapru A, Higgerson RA, et al. Fluid balance in critically ill children with acute lung injury. Crit Care Med. 2012;40(10):2883–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sinitsky L, Walls D, Nadel S, Inwald DP. Fluid overload at 48 hours is associated with respiratory morbidity but not mortality in a general PICU: retrospective cohort study. Pediatr Crit Care Med. 2015;16(3):205–9.

    Article  PubMed  Google Scholar 

  24. Ingelse SA, Wiegers HM, Calis JC, van Woensel JB, Bem RA. Early fluid overload prolongs mechanical ventilation in children with viral-lower respiratory tract disease. Pediatr Crit Care Med. 2017;18(3):e106–11.

    Article  PubMed  Google Scholar 

  25. Li Y, Wang J, Bai Z, et al. Early fluid overload is associated with acute kidney injury and PICU mortality in critically ill children. Eur J Pediatr. 2016;175(1):39–48.

    Article  PubMed  Google Scholar 

  26. Seguin J, Albright B, Vertullo L, et al. Extent, risk factors, and outcome of fluid overload after pediatric heart surgery∗. Crit Care Med. 2014;42(12):2591–9.

    Article  PubMed  Google Scholar 

  27. Diaz F, Nunez MJ, Pino P, Erranz B, Cruces P. Implementation of preemptive fluid strategy as a bundle to prevent fluid overload in children with acute respiratory distress syndrome and sepsis. BMC Pediatr. 2018;18(1):207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Foster BA, Tom D, Hill V. Hypotonic versus isotonic fluids in hospitalized children: a systematic review and meta-analysis. J Pediatr. 2014;165(1):163–169 e162.

    Article  PubMed  Google Scholar 

  29. Barhight MF, Brinton J, Stidham T, et al. Increase in chloride from baseline is independently associated with mortality in critically ill children. Intensive Care Med. 2018;44(12):2183–91.

    Article  CAS  PubMed  Google Scholar 

  30. Barhight MF, Lusk J, Brinton J, et al. Hyperchloremia is independently associated with mortality in critically ill children who ultimately require continuous renal replacement therapy. Pediatr Nephrol. 2018;33(6):1079–85.

    Article  PubMed  Google Scholar 

  31. National Heart Lung and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network, Wiedemann HP, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.

    Article  Google Scholar 

  32. Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Thompson BT, Bellamy SL, Localio AR, Demissie E, Hopkins RO, Angus DC. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185(12):1307–15. https://doi.org/10.1164/rccm.201111-2025OC.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Valentine SL, Nadkarni VM, Curley MA. Pediatric acute lung injury consensus conference G. nonpulmonary treatments for pediatric acute respiratory distress syndrome: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S73–85.

    Article  PubMed  Google Scholar 

  35. Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute lung injury consensus conference G. pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S23–40.

    Article  PubMed  Google Scholar 

  36. Kyle UG, Akcan-Arikan A, Silva JC, Goldsworthy M, Shekerdemian LS, Coss-Bu JA. Protein feeding in pediatric acute kidney injury is not associated with a delay in renal recovery. J Ren Nutr. 2017;27(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  37. Pu H, Doig GS, Heighes PT, et al. Intravenous amino acid therapy for kidney protection in cardiac surgery patients: a pilot randomized controlled trial. J Thorac Cardiovasc Surg. 2018; https://doi.org/10.1016/j.jtcvs.2018.11.097. pii: S0022-5223(18)33243-4.

    Article  CAS  PubMed  Google Scholar 

  38. Martin GS, Moss M, Wheeler AP, Mealer M, Morris JA, Bernard GR. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med. 2005;33(8):1681–7.

    Article  CAS  PubMed  Google Scholar 

  39. Martin GS, Mangialardi RJ, Wheeler AP, Dupont WD, Morris JA, Bernard GR. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med. 2002;30(10):2175–82.

    Article  CAS  PubMed  Google Scholar 

  40. Selewski DT, Cornell TT, Blatt NB, et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit Care Med. 2012;40(9):2694–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guess R, Vaewpanich J, Coss-Bu JA, et al. Risk factors for ventilator-associated events in a PICU. Pediatr Crit Care Med. 2018;19(1):e7–e13.

    Article  PubMed  Google Scholar 

  42. Basu RK, Wheeler DS. Kidney-lung cross-talk and acute kidney injury. Pediatr Nephrol. 2013;28(12):2239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu KD, Altmann C, Smits G, et al. Serum interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: a case-control study. Crit Care. 2009;13(4):R104.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Faubel S, Edelstein CL. Mechanisms and mediators of lung injury after acute kidney injury. Nat Rev Nephrol. 2016;12(1):48–60.

    Article  CAS  PubMed  Google Scholar 

  45. Grams ME, Rabb H. The distant organ effects of acute kidney injury. Kidney Int. 2012;81(10):942–8.

    Article  PubMed  Google Scholar 

  46. Zinter MS, Spicer AC, Liu KD, et al. Positive cumulative fluid balance is associated with mortality in pediatric acute respiratory distress syndrome in the setting of acute kidney injury. Pediatr Crit Care Med. 2019;20(4):323–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mekontso Dessap A, Katsahian S, Roche-Campo F, et al. Ventilator-associated pneumonia during weaning from mechanical ventilation: role of fluid management. Chest. 2014;146(1):58–65.

    Article  PubMed  Google Scholar 

  48. Akcan-Arikan A, Gebhard DJ, Arnold MA, Loftis LL, Kennedy CE. Fluid overload and kidney injury score: a multidimensional real-time assessment of renal disease burden in the critically ill patient. Pediatr Crit Care Med. 2017;18(6):524–30.

    Article  PubMed  Google Scholar 

  49. Liu KD, Thompson BT, Ancukiewicz M, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39(12):2665–71.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Duggan CWJ, Walker WA. Nutrition in pediatrics: basic science, clinical application. 4th ed. Hamilton: BC Decker; 2008.

    Google Scholar 

  51. Mehta NM, Duggan CP. Nutritional deficiencies during critical illness. Pediatr Clin N Am. 2009;56(5):1143–60.

    Article  Google Scholar 

  52. Irving SY, Daly B, Verger J, et al. The association of nutrition status expressed as body mass index z score with outcomes in children with severe sepsis: a secondary analysis from the Sepsis prevalence, outcomes, and therapies (SPROUT) study. Crit Care Med. 2018;46(11):e1029–39.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Delgado AF, Okay TS, Leone C, Nichols B, Del Negro GM, Vaz FA. Hospital malnutrition and inflammatory response in critically ill children and adolescents admitted to a tertiary intensive care unit. Clinics (Sao Paulo). 2008;63(3):357–62.

    Article  Google Scholar 

  54. Bechard LJ, Duggan C, Touger-Decker R, et al. Nutritional status based on body mass index is associated with morbidity and mortality in mechanically ventilated critically ill children in the PICU. Crit Care Med. 2016;44(8):1530–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mehta NM, Corkins MR, Lyman B, et al. Defining pediatric malnutrition: a paradigm shift toward etiology-related definitions. JPEN J Parenter Enteral Nutr. 2013;37(4):460–81.

    Article  PubMed  Google Scholar 

  56. Agus MS, Javid PJ, Piper HG, et al. The effect of insulin infusion upon protein metabolism in neonates on extracorporeal life support. Ann Surg. 2006;244(4):536–44.

    PubMed  PubMed Central  Google Scholar 

  57. Botran M, Lopez-Herce J, Mencia S, Urbano J, Solana MJ, Garcia A. Enteral nutrition in the critically ill child: comparison of standard and protein-enriched diets. J Pediatr. 2011;159(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  58. Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706–42.

    Article  PubMed  Google Scholar 

  59. Mehta NM, Compher C. A.S.P.E.N. clinical guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 2009;33(3):260–76.

    Article  PubMed  Google Scholar 

  60. Diaz EC, Herndon DN, Porter C, Sidossis LS, Suman OE, Borsheim E. Effects of pharmacological interventions on muscle protein synthesis and breakdown in recovery from burns. Burns. 2015;41(4):649–57.

    Article  PubMed  Google Scholar 

  61. Zappitelli M, Juarez M, Castillo L, Coss-Bu J, Goldstein SL. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children. Intensive Care Med. 2009;35(4):698–706.

    Article  CAS  PubMed  Google Scholar 

  62. Kamel AY, Dave NJ, Zhao VM, Griffith DP, Connor MJ Jr, Ziegler TR. Micronutrient alterations during continuous renal replacement therapy in critically ill adults: a retrospective study. Nutr Clin Pract. 2018;33(3):439–46.

    CAS  PubMed  Google Scholar 

  63. Goldman HI, Freudenthal R, Holland B, Karelitz S. Clinical effects of two different levels of protein intake on low-birth-weight infants. J Pediatr. 1969;74(6):881–9.

    Article  CAS  PubMed  Google Scholar 

  64. Goldman HI, Liebman OB, Freudenthal R, Reuben R. Effects of early dietary protein intake on low-birth-weight infants: evaluation at 3 years of age. J Pediatr. 1971;78(1):126–9.

    Article  CAS  PubMed  Google Scholar 

  65. Martinez EE, Smallwood CD, Bechard LJ, Graham RJ, Mehta NM. Metabolic assessment and individualized nutrition in children dependent on mechanical ventilation at home. J Pediatr. 2015;166(2):350–7.

    Article  PubMed  Google Scholar 

  66. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr. 2014;38(7):886–90.

    Article  PubMed  Google Scholar 

  67. Savalle M, Gillaizeau F, Maruani G, et al. Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab. 2012;303(3):E389–96.

    Article  CAS  PubMed  Google Scholar 

  68. Sheean PM, Peterson SJ, Gomez Perez S, et al. The prevalence of sarcopenia in patients with respiratory failure classified as normally nourished using computed tomography and subjective global assessment. JPEN J Parenter Enteral Nutr. 2014;38(7):873–9.

    Article  PubMed  Google Scholar 

  69. Mikhailov TA, Kuhn EM, Manzi J, et al. Early enteral nutrition is associated with lower mortality in critically ill children. JPEN J Parenter Enteral Nutr. 2014;38(4):459–66.

    Article  PubMed  Google Scholar 

  70. Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. Am J Clin Nutr. 1998;67(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  71. Leong AY, Field CJ, Larsen BM. Nutrition support of the postoperative cardiac surgery child. Nutr Clin Pract. 2013;28(5):572–9.

    Article  PubMed  Google Scholar 

  72. Mehta NM, Bechard LJ, Dolan M, Ariagno K, Jiang H, Duggan C. Energy imbalance and the risk of overfeeding in critically ill children. Pediatr Crit Care Med. 2011;12(4):398–405.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mehta NM, Duggan CP. Nutritional deficiencies during critical illness. Pediatr Clin North Am. 2009;56(5):1143–60.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Briassoulis G, Zavras N, Hatzis T. Malnutrition, nutritional indices, and early enteral feeding in critically ill children. Nutrition. 2001;17(7–8):548–57.

    Article  CAS  PubMed  Google Scholar 

  75. Preiser JC, van Zanten AR, Berger MM, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies. Crit Care. 2015;19:35.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Berger MM, Chiolero RL. Hypocaloric feeding: pros and cons. Curr Opin Crit Care. 2007;13(2):180–6.

    Article  PubMed  Google Scholar 

  77. Alaedeen DI, Walsh MC, Chwals WJ. Total parenteral nutrition-associated hyperglycemia correlates with prolonged mechanical ventilation and hospital stay in septic infants. J Pediatr Surg. 2006;41(1):239–44; discussion 239–244.

    Article  PubMed  Google Scholar 

  78. Vazquez Martinez JL, Martinez-Romillo PD, Diez SJ, Ruza TF. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period. Pediatr Crit Care Med. 2004;5(1):19–27.

    Article  PubMed  Google Scholar 

  79. Letton RW, Chwals WJ, Jamie A, Charles B. Early postoperative alterations in infant energy use increase the risk of overfeeding. J Pediatr Surg. 1995;30(7):988–92; discussion 992–983.

    Article  CAS  PubMed  Google Scholar 

  80. Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest. 2004;126(3):872–8.

    Article  PubMed  Google Scholar 

  81. Wang D, Zheng SQ, Chen XC, Jiang SW, Chen HB. Comparisons between small intestinal and gastric feeding in severe traumatic brain injury: a systematic review and meta-analysis of randomized controlled trials. J Neurosurg. 2015;123(5):1194–201.

    Article  CAS  PubMed  Google Scholar 

  82. Lopez-Herce J, Mencia S, Sanchez C, Santiago MJ, Bustinza A, Vigil D. Postpyloric enteral nutrition in the critically ill child with shock: a prospective observational study. Nutr J. 2008;7:6.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lopez-Herce J, Santiago MJ, Sanchez C, Mencia S, Carrillo A, Vigil D. Risk factors for gastrointestinal complications in critically ill children with transpyloric enteral nutrition. Eur J Clin Nutr. 2008;62(3):395–400.

    Article  CAS  PubMed  Google Scholar 

  84. Fivez T, Kerklaan D, Verbruggen S, et al. Impact of withholding early parenteral nutrition completing enteral nutrition in pediatric critically ill patients (PEPaNIC trial): study protocol for a randomized controlled trial. Trials. 2015;16:202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Fivez T, Kerklaan D, Mesotten D, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med. 2016;374(12):1111–22.

    Article  CAS  PubMed  Google Scholar 

  86. Denne SC, Poindexter BB. Evidence supporting early nutritional support with parenteral amino acid infusion. Semin Perinatol. 2007;31(2):56–60.

    Article  PubMed  Google Scholar 

  87. Ehrenkranz RA, Das A, Wrage LA, et al. Early nutrition mediates the influence of severity of illness on extremely LBW infants. Pediatr Res. 2011;69(6):522–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Evans RA, Thureen P. Early feeding strategies in preterm and critically ill neonates. Neonatal Netw. 2001;20(7):7–18.

    Article  CAS  PubMed  Google Scholar 

  89. Franz AR, Pohlandt F, Bode H, et al. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics. 2009;123(1):e101–9.

    Article  PubMed  Google Scholar 

  90. Lucas A, Morley R, Cole TJ. Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ (Clinical Research ed). 1998;317(7171):1481–7.

    Article  CAS  Google Scholar 

  91. Grau-Carmona T, Bonet-Saris A, Garcia-de-Lorenzo A, et al. Influence of n-3 polyunsaturated fatty acids enriched lipid emulsions on nosocomial infections and clinical outcomes in critically ill patients: ICU lipids study. Crit Care Med. 2015;43(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  92. Grintescu IM, Luca Vasiliu I, Cucereanu Badica I, et al. The influence of parenteral glutamine supplementation on glucose homeostasis in critically ill polytrauma patients--a randomized-controlled clinical study. Clin Nutr. 2015;34(3):377–82.

    Article  CAS  PubMed  Google Scholar 

  93. Najmi M, Vahdat Shariatpanahi Z, Tolouei M, Amiri Z. Effect of oral olive oil on healing of 10–20% total body surface area burn wounds in hospitalized patients. Burns. 2015;41(3):493–6.

    Article  PubMed  Google Scholar 

  94. Zhang WC, Zheng XJ, Du LJ, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25(8):893–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. King W, Petrillo T, Pettignano R. Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2004;28(5):334–8.

    Article  PubMed  Google Scholar 

  96. Rogers EJ, Gilbertson HR, Heine RG, Henning R. Barriers to adequate nutrition in critically ill children. Nutrition. 2003;19(10):865–8.

    Article  PubMed  Google Scholar 

  97. Canarie MF, Barry S, Carroll CL, et al. Risk factors for delayed enteral nutrition in critically ill children. Pediatr Crit Care Med. 2015;16(8):e283–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Khalid I, Doshi P, DiGiovine B. Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care. 2010;19(3):261–8.

    Article  PubMed  Google Scholar 

  99. Panchal AK, Manzi J, Connolly S, et al. Safety of enteral feedings in critically ill children receiving vasoactive agents. JPEN J Parenter Enteral Nutr. 2016;40(2):236–41.

    Article  CAS  PubMed  Google Scholar 

  100. Meyer R, Harrison S, Sargent S, Ramnarayan P, Habibi P, Labadarios D. The impact of enteral feeding protocols on nutritional support in critically ill children. J Hum Nutr Diet. 2009;22(5):428–36.

    Article  CAS  PubMed  Google Scholar 

  101. McClave SA, Lukan JK, Stefater JA, et al. Poor validity of residual volumes as a marker for risk of aspiration in critically ill patients. Crit Care Med. 2005;33(2):324–30.

    Article  PubMed  Google Scholar 

  102. Metheny NA, Mills AC, Stewart BJ. Monitoring for intolerance to gastric tube feedings: a national survey. Am J Crit Care. 2012;21(2):e33–40.

    Article  PubMed  Google Scholar 

  103. Martinez EE, Douglas K, Nurko S, Mehta NM. Gastric dysmotility in critically ill children: pathophysiology, diagnosis, and management. Pediatr Crit Care Med. 2015;16(9):828–36.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Martinez EE, Katherine BS, Nurko S, Mehta NM. Gastric dysmotility in critically ill children: pathophysiology, diagnosis, and management. Pediatr Crit Care Med. 2015;16(9):828–36.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Deane A, Chapman MJ, Fraser RJ, Bryant LK, Burgstad C, Nguyen NQ. Mechanisms underlying feed intolerance in the critically ill: implications for treatment. World J Gastroenterol. 2007;13(29):3909–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Reeves A, White H, Sosnowski K, Tran K, Jones M, Palmer M. Energy and protein intakes of hospitalised patients with acute respiratory failure receiving non-invasive ventilation. Clin Nutr. 2014;33(6):1068–73.

    Article  CAS  PubMed  Google Scholar 

  107. Ridley EJ, Davies AR, Robins EJ, et al. Nutrition therapy in adult patients receiving extracorporeal membrane oxygenation: a prospective, multicentre, observational study. Crit Care Resusc. 2015;17(3):183–9.

    PubMed  Google Scholar 

  108. Haskins IN, Baginsky M, Gamsky N, et al. A volume-based enteral nutrition support regimen improves caloric delivery but may not affect clinical outcomes in critically ill patients. JPEN J Parenter Enteral Nutr. 2017;41(4):607–11.

    Article  PubMed  Google Scholar 

  109. Hamilton S, McAleer DM, Ariagno K, et al. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals∗. Pediatr Crit Care Med. 2014;15(7):583–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Joffe A, Anton N, Lequier L, et al. Nutritional support for critically ill children. Cochrane Database Syst Rev. 2016;5:CD005144.

    Google Scholar 

  111. Rendon JL, Choudhry MA. Th17 cells: critical mediators of host responses to burn injury and sepsis. J Leukoc Biol. 2012;92(3):529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proc Natl Acad Sci U S A. 2011;108(13):5354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sodhi CP, Jia H, Yamaguchi Y, et al. Intestinal epithelial TLR-4 activation is required for the development of acute lung injury after trauma/hemorrhagic shock via the release of HMGB1 from the gut. J Immunol. 2015;194(10):4931–9.

    Article  CAS  PubMed  Google Scholar 

  114. Galperin C, Gershwin ME. Immunopathogenesis of gastrointestinal and hepatobiliary diseases. JAMA. 1997;278(22):1946–55.

    Article  CAS  PubMed  Google Scholar 

  115. Samuelson DR, Welsh DA, Shellito JE. Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol. 2015;6:1085.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure. Curr Opin Crit Care. 2017;23(2):143–8.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Carmody RN, Gerber GK, Luevano JM Jr, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17(1):72–84.

    Article  CAS  PubMed  Google Scholar 

  118. McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142(1):24–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shimizu K, Ogura H, Hamasaki T, et al. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig Dis Sci. 2011;56(4):1171–7.

    Article  PubMed  Google Scholar 

  120. Rogers MB, Firek B, Shi M, et al. Disruption of the microbiota across multiple body sites in critically ill children. Microbiome. 2016;4(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McDonald D, Ackermann G, Khailova L, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016;1(4) https://doi.org/10.1128/mSphere.00199-16.

  123. Zaborin A, Smith D, Garfield K, et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. MBio. 2014;5(5):e01361–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Seki H, Fukunaga K, Arita M, et al. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J Immunol. 2010;184(2):836–43.

    Article  CAS  PubMed  Google Scholar 

  125. Eickmeier O, Seki H, Haworth O, et al. Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol. 2013;6(2):256–66.

    Article  CAS  PubMed  Google Scholar 

  126. Jacobs BR, Nadkarni V, Goldstein B, et al. Nutritional immunomodulation in critically ill children with acute lung injury: feasibility and impact on circulating biomarkers. Pediatr Crit Care Med. 2013;14(1):e45–56.

    Article  PubMed  Google Scholar 

  127. Kudsk KA. Effect of route and type of nutrition on intestine-derived inflammatory responses. Am J Surg. 2003;185(1):16–21.

    Article  PubMed  Google Scholar 

  128. Janu P, Li J, Renegar KB, Kudsk KA. Recovery of gut-associated lymphoid tissue and upper respiratory tract immunity after parenteral nutrition. Ann Surg. 1997;225(6):707–15; discussion 715–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Heyland DK, Dhaliwal R, Day AG, et al. REducing deaths due to OXidative stress (the REDOXS study): rationale and study design for a randomized trial of glutamine and antioxidant supplementation in critically-ill patients. Proc Nutr Soc. 2006;65(3):250–63.

    Article  CAS  PubMed  Google Scholar 

  130. Andrews PJ, Avenell A, Noble DW, et al. Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients. Protocol Version 9, 19 February 2007 known as SIGNET (Scottish Intensive care Glutamine or seleNium Evaluative Trial). Trials. 2007;8:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Allingstrup M, Afshari A. Selenium supplementation for critically ill adults. Cochrane Database Syst Rev. 2015;(7):CD003703.

    Google Scholar 

  132. Barbosa E, Moreira EA, Goes JE, Faintuch J. Pilot study with a glutamine-supplemented enteral formula in critically ill infants. Rev Hosp Clin Fac Med Sao Paulo. 1999;54(1):21–4.

    Article  CAS  PubMed  Google Scholar 

  133. Brodska H, Valenta J, Malickova K, Kohout P, Kazda A, Drabek T. Biomarkers in critically ill patients with systemic inflammatory response syndrome or sepsis supplemented with high-dose selenium. J Trace Elem Med Biol. 2015;31:25–32.

    Article  CAS  PubMed  Google Scholar 

  134. Carcillo JA, Dean JM, Holubkov R, et al. The randomized comparative pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. Pediatr Crit Care Med. 2012;13(2):165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P. Canadian critical care clinical practice guidelines C. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27(5):355–73.

    Article  PubMed  Google Scholar 

  136. Mayes T, Gottschlich MM, Kagan RJ. An evaluation of the safety and efficacy of an anti-inflammatory, pulmonary enteral formula in the treatment of pediatric burn patients with respiratory failure. J Burn Care Res. 2008;29(1):82–8.

    Article  PubMed  Google Scholar 

  137. Tao KM, Li XQ, Yang LQ, et al. Glutamine supplementation for critically ill adults. Cochrane Database Syst Rev. 2014;9:CD010050.

    Google Scholar 

  138. Garcia de Acilu M, Leal S, Caralt B, Roca O, Sabater J, Masclans JR. The role of omega-3 polyunsaturated fatty acids in the treatment of patients with acute respiratory distress syndrome: a clinical review. Biomed Res Int. 2015;2015:653750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Onwuneme C, Martin F, McCarthy R, et al. The association of vitamin D status with acute respiratory morbidity in preterm infants. J Pediatr. 2015;166(5):1175–1180.e1171.

    Article  CAS  PubMed  Google Scholar 

  140. Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617–24.

    Article  PubMed  Google Scholar 

  141. Thickett DR, Moromizato T, Litonjua AA, et al. Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study. BMJ Open Respir Res. 2015;2(1):e000074.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Parekh D, Thickett DR, Turner AM. Vitamin D deficiency and acute lung injury. Inflamm Allergy Drug Targets. 2013;12(4):253–61.

    Article  CAS  PubMed  Google Scholar 

  143. Heulens N, Korf H, Cielen N, et al. Vitamin D deficiency exacerbates COPD-like characteristics in the lungs of cigarette smoke-exposed mice. Respir Res. 2015;16:110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Foong RE, Bosco A, Jones AC, et al. The effects of in utero vitamin D deficiency on airway smooth muscle mass and lung function. Am J Respir Cell Mol Biol. 2015;53(5):664–75.

    Article  CAS  PubMed  Google Scholar 

  145. Nouari W, Ysmail-Dahlouk L, Aribi M. Vitamin D3 enhances bactericidal activity of macrophage against Pseudomonas aeruginosa. Int Immunopharmacol. 2016;30:94–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katri V. Typpo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akcan-Arikan, A., Typpo, K.V. (2020). Fluids, Nutrition, and Acute Kidney Injury in Pediatric Acute Respiratory Distress Syndrome. In: Shein, S., Rotta, A. (eds) Pediatric Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-21840-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21840-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21839-3

  • Online ISBN: 978-3-030-21840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics