Skip to main content

Recent Context-Aware LSTM for Clinical Event Time-Series Prediction

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11526))

Included in the following conference series:

Abstract

In this work, we propose a novel clinical event time-series model based on the long short-term memory architecture (LSTM) that can predict future event occurrences for a large number of different clinical events. Our model relies on two sources of information to predict future events. One source is derived from the set of recently observed clinical events. The other one is based on the hidden state space defined by the LSTM that aims to abstract past, more distant, patient information that is predictive of future events. We evaluate our proposed model on electronic health record (EHRs) data derived from MIMIC-III dataset. We show that the combination of the two sources of information implemented in our method leads to improved prediction performance compared to the models based on individual sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, P.A., Chang, L.C., Chang, F.J.: Reinforced recurrent neural networks for multi-step-ahead flood forecasts. J. Hydrol. 497, 71–79 (2013)

    Article  Google Scholar 

  2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  3. Choi, E., et al.: Multi-layer representation learning for medical concepts. In: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  4. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: an interpretable predictive model for healthcare using reverse time attention mechanism. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  5. Davis, J., Goadrich, M.: The relationship between precision-recall and the ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240. ACM (2006)

    Google Scholar 

  6. Esteban, C., Schmidt, D., Krompa, D., Tresp, V.: Predicting sequences of clinical events by using a personalized temporal latent embedding model (2015)

    Google Scholar 

  7. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: International Conference on Machine Learning, pp. 1764–1772 (2014)

    Google Scholar 

  8. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: Draw: a recurrent neural network for image generation. arXiv preprint arXiv:1502.04623 (2015)

  9. Han, M., Xi, J., Xu, S., Yin, F.L.: Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 52(12), 3409–3416 (2004)

    Article  MathSciNet  Google Scholar 

  10. Hassan, M.R., Nath, B.: Stock market forecasting using hidden Markov model: a new approach. In: Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, ISDA 2005, pp. 192–196. IEEE (2005)

    Google Scholar 

  11. Hauskrecht, M., et al.: Outlier-based detection of unusual patient-management actions: an ICU study. J. Biomed. Inform. 64, 211–221 (2016)

    Article  Google Scholar 

  12. Hauskrecht, M., Batal, I., Valko, M., Visweswaran, S., Cooper, G.F., Clermont, G.: Outlier detection for patient monitoring and alerting. J. Biomed. Inform. 46(1), 47–55 (2013)

    Article  Google Scholar 

  13. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies (2001)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Hughey, R., Krogh, A.: Hidden Markov models for sequence analysis: extension and analysis of the basic method. Bioinformatics 12(2), 95–107 (1996)

    Article  Google Scholar 

  16. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  17. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind. Appl. Math. 1(2), 152–192 (1963)

    Article  MathSciNet  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

  20. Liu, Z., Hauskrecht, M.: Clinical time series prediction: toward a hierarchical dynamical system framework. Artif. Intell. Med. 65(1), 5–18 (2015)

    Article  Google Scholar 

  21. Liu, Z., Hauskrecht, M.: A regularized linear dynamical system framework for multivariate time series analysis. In: The 29th AAAI Conference on Artificial Intelligence, pp. 1798–1804 (2015)

    Google Scholar 

  22. Liu, Z., Hauskrecht, M.: Learning linear dynamical systems from multivariate time series: a matrix factorization based framework. In: SIAM International Conference on Data Mining (2016)

    Google Scholar 

  23. Liu, Z., Wu, L., Hauskrecht, M.: Modeling clinical time series using Gaussian process sequences. In: SIAM International Conference on Data Mining (2013)

    Google Scholar 

  24. MacDonald, I.L., Zucchini, W.: Hidden Markov and Other Models for Discrete-Valued Time Series, vol. 110. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  25. McKenzie, E.: Ch. 16. discrete variate time series. Handb. Stat. 21, 573–606 (2003)

    Article  Google Scholar 

  26. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  27. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3), e0118432 (2015)

    Article  Google Scholar 

  28. Smyth, P.: Clustering sequences with hidden Markov models. In: Advances in Neural Information Processing Systems, pp. 648–654 (1997)

    Google Scholar 

  29. Stratonovich, R.L.: Conditional Markov processes. Theory Probab. Appl. 5(2), 156–178 (1960)

    Article  MathSciNet  Google Scholar 

  30. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  31. Valko, M., Hauskrecht, M.: Feature importance analysis for patient management decisions. In: International Congress on Medical Informatics, pp. 861–865 (2010)

    Google Scholar 

  32. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

Download references

Acknowledgement

The work in this paper was supported by NIH grant R01GM088224. The content of the paper is solely the responsibility of the authors and does not necessarily represent the official views of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Min Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J.M., Hauskrecht, M. (2019). Recent Context-Aware LSTM for Clinical Event Time-Series Prediction. In: Riaño, D., Wilk, S., ten Teije, A. (eds) Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science(), vol 11526. Springer, Cham. https://doi.org/10.1007/978-3-030-21642-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21642-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21641-2

  • Online ISBN: 978-3-030-21642-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics