Skip to main content

Experimental Models for Preclinical Research in Hepatocellular Carcinoma

  • Chapter
  • First Online:

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hepatocellular carcinoma (HCC), the most frequent form of liver cancer, is among the top fatal malignancies worldwide. The therapeutic options for patients with advanced HCC are limited and poorly efficient. Therefore, it is critical that we identify and develop novel curative strategies in order to address this major health issue. For this, it is essential to gain mechanistic understanding of HCC pathogenesis as clues to therapeutic intervention. Over the last decades, a wide range of HCC models have been developed, aiming to achieve the goal. In particular, animal models and in vitro systems that mimic the major characteristics of the human HCC have emerged to enable functional assessment of candidate therapeutic targets in liver cancer. However, each model recapitulates limited aspects of the whole pathogenesis of the human disease. Nevertheless, combined analysis of multiple different models can collectively provide clinically relevant insights into the complex disease mechanisms. Here we summarize the major approaches of experimental modeling in HCC and their strengths and limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dhanasekaran R, Limaye A, Cabrera R. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepat Med. 2012;4:19–37. https://doi.org/10.2147/HMER.S16316.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018. https://doi.org/10.1038/nrdp.2016.18.

    Article  PubMed  Google Scholar 

  3. Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, et al. A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130(4):187–96. https://doi.org/10.1007/s00432-003-0511-1.

    Article  PubMed  Google Scholar 

  4. Portolani N, Coniglio A, Ghidoni S, Giovanelli M, Benetti A, Tiberio GA, et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann Surg. 2006;243(2):229–35. https://doi.org/10.1097/01.sla.0000197706.21803.a1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dimitroulis D, Damaskos C, Valsami S, Davakis S, Garmpis N, Spartalis E, et al. From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and developing world. World J Gastroenterol. 2017;23(29):5282–94. https://doi.org/10.3748/wjg.v23.i29.5282.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013;47(Suppl):S2–6. https://doi.org/10.1097/MCG.0b013e3182872f29.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines. J Natl Cancer Inst. 2013;105(7):452–8. https://doi.org/10.1093/jnci/djt007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Collection AATC. Hep G2 [HEPG2] (ATCC® HB-8065™). ATCC. 2016. https://www.atcc.org/products/all/HB-8065.aspx#characteristics. 2018.

  9. Lopez-Terrada D, Cheung SW, Finegold MJ, Knowles BB. Hep G2 is a hepatoblastoma-derived cell line. Hum Pathol. 2009;40(10):1512–5. https://doi.org/10.1016/j.humpath.2009.07.003.

    Article  CAS  PubMed  Google Scholar 

  10. Bank JC. JCRB0403 – Huh-7. National Institutes of Biomedical Innovation, Health and Nutrition – Japan. 2015. http://cellbank.nibiohn.go.jp/~cellbank/en/search_res_det.cgi?ID=385.2018.

  11. Sainz B Jr, TenCate V, Uprichard SL. Three-dimensional Huh7 cell culture system for the study of hepatitis C virus infection. Virol J. 2009;6:103. https://doi.org/10.1186/1743-422X-6-103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang C, Yi Z, Liu F, Lan S, Wang J, Lu H, et al. Proteome analysis of human liver carcinoma Huh7 cells harboring hepatitis C virus subgenomic replicon. Proteomics. 2006;6(2):519–27. https://doi.org/10.1002/pmic.200500233.

    Article  CAS  PubMed  Google Scholar 

  13. Ali N, Allam H, May R, Sureban SM, Bronze MS, Bader T, et al. Hepatitis C virus-induced cancer stem cell-like signatures in cell culture and murine tumor xenografts. J Virol. 2011;85(23):12292–303. https://doi.org/10.1128/JVI.05920-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1990;87(5):1973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rebouissou S, Zucman-Rossi J, Moreau R, Qiu Z, Hui L. Note of caution: contaminations of hepatocellular cell lines. J Hepatol. 2017;67(5):896–7. https://doi.org/10.1016/j.jhep.2017.08.002.

    Article  PubMed  Google Scholar 

  16. Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized human hepatic cell lines for in vitro testing and research purposes. Methods Mol Biol. 2015;1250:53–76. https://doi.org/10.1007/978-1-4939-2074-7_4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arellanes-Robledo J, Hernández C, Camacho J, Pérez-Carreón JI, editors. In vitro models of HCC, Chapter 42. In: Liver pathophysiology: Academic Press; 2017. https://www.elsevier.com/books/liver-pathophysiology/muriel/978-0-12-804274-8.

  18. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246–54. https://doi.org/10.1038/ncb3312.

    Article  CAS  PubMed  Google Scholar 

  19. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–97. https://doi.org/10.1016/j.cell.2016.05.082.

    Article  CAS  PubMed  Google Scholar 

  20. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481–4. https://doi.org/10.1038/nature12271.

    Article  CAS  PubMed  Google Scholar 

  21. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160(1–2):299–312. https://doi.org/10.1016/j.cell.2014.11.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Broutier L, Andersson-Rolf A, Hindley CJ, Boj SF, Clevers H, Koo BK, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc. 2016;11(9):1724–43. https://doi.org/10.1038/nprot.2016.097.

    Article  CAS  PubMed  Google Scholar 

  23. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494(7436):247–50. https://doi.org/10.1038/nature11826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarro LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23(12):1424–35. https://doi.org/10.1038/nm.4438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He L, Tian DA, Li PY, He XX. Mouse models of liver cancer: progress and recommendations. Oncotarget. 2015;6(27):23306–22. https://doi.org/10.18632/oncotarget.4202.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Price JE. Xenograft models in immunodeficient animals: I. Nude mice: spontaneous and experimental metastasis models. Methods Mol Med. 2001;58:205–13. https://doi.org/10.1385/1-59259-137-X:205.

    Article  CAS  PubMed  Google Scholar 

  27. Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247–50. https://doi.org/10.1038/nprot.2007.25.

    Article  CAS  PubMed  Google Scholar 

  28. Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech. 2008;1(2–3):78–82. https://doi.org/10.1242/dmm.000976.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Heindryckx F, Colle I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol. 2009;90(4):367–86. https://doi.org/10.1111/j.1365-2613.2009.00656.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santos NP, Colaco AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: a review. Tumour Biol. 2017;39(3):1010428317695923. https://doi.org/10.1177/1010428317695923.

    Article  PubMed  Google Scholar 

  31. Killion JJ, Radinsky R, Fidler IJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 1998;17(3):279–84.

    Article  PubMed  Google Scholar 

  32. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502. https://doi.org/10.1016/S0140-6736(17)31046-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018; https://doi.org/10.1016/S1470-2045(18)30351-6.

  34. Zimmerman HJ, Lewis JH. Chemical- and toxin-induced hepatotoxicity. Gastroenterol Clin N Am. 1995;24(4):1027–45.

    CAS  Google Scholar 

  35. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349(5):474–85. https://doi.org/10.1056/NEJMra021844.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang YJ. Interactions of chemical carcinogens and genetic variation in hepatocellular carcinoma. World J Hepatol. 2010;2(3):94–102. https://doi.org/10.4254/wjh.v2.i3.94.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heath JC. The production of malignant tumours by cobalt in the rat. Br J Cancer. 1956;10(4):668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verna L, Whysner J, Williams GM. N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol Ther. 1996;71(1–2):57–81.

    Article  CAS  PubMed  Google Scholar 

  39. Qi Y, Chen X, Chan CY, Li D, Yuan C, Yu F, et al. Two-dimensional differential gel electrophoresis/analysis of diethylnitrosamine induced rat hepatocellular carcinoma. Int J Cancer. 2008;122(12):2682–8. https://doi.org/10.1002/ijc.23464.

    Article  CAS  PubMed  Google Scholar 

  40. Kolaja KL, Klaunig JE. Vitamin E modulation of hepatic focal lesion growth in mice. Toxicol Appl Pharmacol. 1997;143(2):380–7.

    Article  CAS  PubMed  Google Scholar 

  41. Tolba R, Kraus T, Liedtke C, Schwarz M, Weiskirchen R. Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab Anim. 2015;49(1 Suppl):59–69. https://doi.org/10.1177/0023677215570086.

    Article  CAS  PubMed  Google Scholar 

  42. Maronpot RR. Biological basis of differential susceptibility to hepatocarcinogenesis among mouse strains. J Toxicol Pathol. 2009;22(1):11–33. https://doi.org/10.1293/tox.22.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakatani T, Roy G, Fujimoto N, Asahara T, Ito A. Sex hormone dependency of diethylnitrosamine-induced liver tumors in mice and chemoprevention by leuprorelin. Jpn J Cancer Res. 2001;92(3):249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317(5834):121–4. https://doi.org/10.1126/science.1140485.

    Article  CAS  PubMed  Google Scholar 

  45. Connor F, Rayner TF, Aitken SJ, Feig C, Lukk M, Santoyo-Lopez J, et al. Mutational landscape of a chemically-induced mouse model of liver cancer. J Hepatol. 2018; https://doi.org/10.1016/j.jhep.2018.06.009.

  46. Waxman DJ, Azaroff L. Phenobarbital induction of cytochrome P-450 gene expression. Biochem J. 1992;281(Pt 3):577–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Watson RE, Goodman JI. Effects of phenobarbital on DNA methylation in GC-rich regions of hepatic DNA from mice that exhibit different levels of susceptibility to liver tumorigenesis. Toxicol Sci. 2002;68(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gourama H, Bullerman LB. Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: a review. J Food Prot. 1995;58(12):1395–404.

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect. 2010;118(6):818–24. https://doi.org/10.1289/ehp.0901388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guengerich FP, Johnson WW, Shimada T, Ueng YF, Yamazaki H, Langouet S. Activation and detoxication of aflatoxin B1. Mutat Res. 1998;402(1–2):121–8.

    Article  CAS  PubMed  Google Scholar 

  51. Hamid AS, Tesfamariam IG, Zhang Y, Zhang ZG. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention. Oncol Lett. 2013;5(4):1087–92. https://doi.org/10.3892/ol.2013.1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mace K, Aguilar F, Wang JS, Vautravers P, Gomez-Lechon M, Gonzalez FJ, et al. Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis. 1997;18(7):1291–7.

    Article  CAS  PubMed  Google Scholar 

  53. McGlynn KA, Hunter K, LeVoyer T, Roush J, Wise P, Michielli RA, et al. Susceptibility to aflatoxin B1-related primary hepatocellular carcinoma in mice and humans. Cancer Res. 2003;63(15):4594–601.

    CAS  PubMed  Google Scholar 

  54. Chu YJ, Yang HI, Wu HC, Lee MH, Liu J, Wang LY, et al. Aflatoxin B1 exposure increases the risk of hepatocellular carcinoma associated with hepatitis C virus infection or alcohol consumption. Eur J Cancer. 2018;94:37–46. https://doi.org/10.1016/j.ejca.2018.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kew MC. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int. 2003;23(6):405–9.

    Article  CAS  PubMed  Google Scholar 

  56. Boll M, Weber LW, Becker E, Stampfl A. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch C. 2001;56(7–8):649–59.

    Article  CAS  PubMed  Google Scholar 

  57. Bhathal PS, Rose NR, Mackay IR, Whittingham S. Strain differences in mice in carbon tetrachloride-induced liver injury. Br J Exp Pathol. 1983;64(5):524–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21(4):504–16. https://doi.org/10.1016/j.ccr.2012.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fitzhugh OG, Nelson AA. Liver tumors in rats fed thiourea or thioacetamide. Science. 1948;108(2814):626–8. https://doi.org/10.1126/science.108.2814.626.

    Article  CAS  PubMed  Google Scholar 

  60. Koen YM, Sarma D, Hajovsky H, Galeva NA, Williams TD, Staudinger JL, et al. Protein targets of thioacetamide metabolites in rat hepatocytes. Chem Res Toxicol. 2013;26(4):564–74. https://doi.org/10.1021/tx400001x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martinez AK, Maroni L, Marzioni M, Ahmed ST, Milad M, Ray D, et al. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies. Curr Pathobiol Rep. 2014;2(4):143–53. https://doi.org/10.1007/s40139-014-0050-2.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li X, Benjamin IS, Alexander B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J Hepatol. 2002;36(4):488–93.

    Article  PubMed  Google Scholar 

  63. Zeisel SH, da Costa KA. Choline: an essential nutrient for public health. Nutr Rev. 2009;67(11):615–23. https://doi.org/10.1111/j.1753-4887.2009.00246.x.

    Article  PubMed  Google Scholar 

  64. Corbin KD, Zeisel SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol. 2012;28(2):159–65. https://doi.org/10.1097/MOG.0b013e32834e7b4b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chandar N, Lombardi B. Liver cell proliferation and incidence of hepatocellular carcinomas in rats fed consecutively a choline-devoid and a choline-supplemented diet. Carcinogenesis. 1988;9(2):259–63.

    Article  CAS  PubMed  Google Scholar 

  66. Ikawa-Yoshida A, Matsuo S, Kato A, Ohmori Y, Higashida A, Kaneko E, et al. Hepatocellular carcinoma in a mouse model fed a choline-deficient, L-amino acid-defined, high-fat diet. Int J Exp Pathol. 2017;98(4):221–33. https://doi.org/10.1111/iep.12240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kishida N, Matsuda S, Itano O, Shinoda M, Kitago M, Yagi H, et al. Development of a novel mouse model of hepatocellular carcinoma with nonalcoholic steatohepatitis using a high-fat, choline-deficient diet and intraperitoneal injection of diethylnitrosamine. BMC Gastroenterol. 2016;16(1):61. https://doi.org/10.1186/s12876-016-0477-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, Martins S, et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 2018;69(2):385–95. https://doi.org/10.1016/j.jhep.2018.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G, et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet. 2009;18(16):2975–88. https://doi.org/10.1093/hmg/ddp236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Borbath I, Horsmans Y. The role of PPARgamma in hepatocellular carcinoma. PPAR Res. 2008;2008:209520. https://doi.org/10.1155/2008/209520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsu HT, Chi CW. Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. J Hepatocell Carcinoma. 2014;1:127–35. https://doi.org/10.2147/JHC.S48512.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9(2):137–53. https://doi.org/10.15252/emmm.201606857.

    Article  CAS  PubMed  Google Scholar 

  73. Lewandoski M. Conditional control of gene expression in the mouse. Nat Rev Genet. 2001;2(10):743–55. https://doi.org/10.1038/35093537.

    Article  CAS  PubMed  Google Scholar 

  74. Bouabe H, Okkenhaug K. Gene targeting in mice: a review. Methods Mol Biol. 2013;1064:315–36. https://doi.org/10.1007/978-1-62703-601-6_23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264–73 e1. https://doi.org/10.1053/j.gastro.2011.12.061.

    Article  PubMed  Google Scholar 

  76. Ott JJ, Stevens GA, Groeger J, Wiersma ST. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine. 2012;30(12):2212–9. https://doi.org/10.1016/j.vaccine.2011.12.116.

    Article  CAS  PubMed  Google Scholar 

  77. Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol. 2016;64(1 Suppl):S84–S101. https://doi.org/10.1016/j.jhep.2016.02.021.

    Article  CAS  PubMed  Google Scholar 

  78. Wang Y, Cui F, Lv Y, Li C, Xu X, Deng C, et al. HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology. 2004;39(2):318–24. https://doi.org/10.1002/hep.20076.

    Article  CAS  PubMed  Google Scholar 

  79. Wang HC, Huang W, Lai MD, Su IJ. Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci. 2006;97(8):683–8. https://doi.org/10.1111/j.1349-7006.2006.00235.x.

    Article  CAS  PubMed  Google Scholar 

  80. Seifer M, Hohne M, Schaefer S, Gerlich WH. In vitro tumorigenicity of hepatitis B virus DNA and HBx protein. J Hepatol. 1991;13(Suppl 4):S61–5.

    Article  CAS  PubMed  Google Scholar 

  81. Koike K. Hepatitis B virus HBx gene and hepatocarcinogenesis. Intervirology. 1995;38(3–4):134–42. https://doi.org/10.1159/000150424.

    Article  CAS  PubMed  Google Scholar 

  82. Zampino R, Marrone A, Restivo L, Guerrera B, Sellitto A, Rinaldi L, et al. Chronic HCV infection and inflammation: clinical impact on hepatic and extra-hepatic manifestations. World J Hepatol. 2013;5(10):528–40. https://doi.org/10.4254/wjh.v5.i10.528.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y, et al. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology. 2002;122(2):352–65.

    Article  CAS  PubMed  Google Scholar 

  84. Koike K. Molecular basis of hepatitis C virus-associated hepatocarcinogenesis: lessons from animal model studies. Clin Gastroenterol Hepatol. 2005;3(10 Suppl 2):S132–5.

    Article  CAS  PubMed  Google Scholar 

  85. Kamegaya Y, Hiasa Y, Zukerberg L, Fowler N, Blackard JT, Lin W, et al. Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology. 2005;41(3):660–7. https://doi.org/10.1002/hep.20621.

    Article  PubMed  Google Scholar 

  86. Koike K, Moriya K, Matsuura Y. Animal models for hepatitis C and related liver disease. Hepatol Res. 2010;40(1):69–82. https://doi.org/10.1111/j.1872-034X.2009.00593.x.

    Article  CAS  PubMed  Google Scholar 

  87. Schulze K, Imbeaud S, Letouze E, Alexandrov LB, Calderaro J, Rebouissou S, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47(5):505–11. https://doi.org/10.1038/ng.3252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cancer Genome Atlas Research Network. Electronic address: wheeler@bcm.edu, Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(7):1327–41 e23. https://doi.org/10.1016/j.cell.2017.05.046.

    Article  CAS  Google Scholar 

  89. Schulze K, Nault JC, Villanueva A. Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol. 2016;65(5):1031–42. https://doi.org/10.1016/j.jhep.2016.05.035.

    Article  CAS  PubMed  Google Scholar 

  90. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905. https://doi.org/10.1038/nature08822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kawate S, Fukusato T, Ohwada S, Watanuki A, Morishita Y. Amplification of c-myc in hepatocellular carcinoma: correlation with clinicopathologic features, proliferative activity and p53 overexpression. Oncology. 1999;57(2):157–63. https://doi.org/10.1159/000012024.

    Article  CAS  PubMed  Google Scholar 

  92. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. https://doi.org/10.1016/j.cell.2012.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Santoni-Rugiu E, Nagy P, Jensen MR, Factor VM, Thorgeirsson SS. Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor-alpha. Am J Pathol. 1996;149(2):407–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431(7012):1112–7. https://doi.org/10.1038/nature03043.

    Article  PubMed  Google Scholar 

  95. Calvisi DF, Conner EA, Ladu S, Lemmer ER, Factor VM, Thorgeirsson SS. Activation of the canonical Wnt/beta-catenin pathway confers growth advantages in c-Myc/E2F1 transgenic mouse model of liver cancer. J Hepatol. 2005;42(6):842–9. https://doi.org/10.1016/j.jhep.2005.01.029.

    Article  CAS  PubMed  Google Scholar 

  96. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461–73. https://doi.org/10.1038/onc.2016.304.

    Article  CAS  PubMed  Google Scholar 

  97. Khalaf AM, Fuentes D, Morshid AI, Burke MR, Kaseb AO, Hassan M, et al. Role of Wnt/beta-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma. 2018;5:61–73. https://doi.org/10.2147/JHC.S156701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nault JC, Mallet M, Pilati C, Calderaro J, Bioulac-Sage P, Laurent C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218. https://doi.org/10.1038/ncomms3218.

    Article  CAS  PubMed  Google Scholar 

  99. Inagawa S, Itabashi M, Adachi S, Kawamoto T, Hori M, Shimazaki J, et al. Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res. 2002;8(2):450–6.

    CAS  PubMed  Google Scholar 

  100. Lai TY, Su CC, Kuo WW, Yeh YL, Kuo WH, Tsai FJ, et al. β-catenin plays a key role in metastasis of human hepatocellular carcinoma. Oncol Rep. 2011;26(2):415–22. https://doi.org/10.3892/or.2011.1323.

    Article  CAS  PubMed  Google Scholar 

  101. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385–92. https://doi.org/10.1158/0008-5472.CAN-09-1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y, Oshima M, et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res. 2002;62(7):1971–7.

    CAS  PubMed  Google Scholar 

  103. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res. 2004;64(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  104. Nejak-Bowen KN, Thompson MD, Singh S, Bowen WC Jr, Dar MJ, Khillan J, et al. Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant beta-catenin. Hepatology. 2010;51(5):1603–13. https://doi.org/10.1002/hep.23538.

    Article  CAS  PubMed  Google Scholar 

  105. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  106. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170(6):1062–78. https://doi.org/10.1016/j.cell.2017.08.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26(15):2166–76. https://doi.org/10.1038/sj.onc.1210279.

    Article  CAS  PubMed  Google Scholar 

  108. Chawanthayatham S, Valentine CC 3rd, Fedeles BI, Fox EJ, Loeb LA, Levine SS, et al. Mutational spectra of aflatoxin B1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2017;114(15):E3101–E9. https://doi.org/10.1073/pnas.1700759114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lewis BC, Klimstra DS, Socci ND, Xu S, Koutcher JA, Varmus HE. The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol Cell Biol. 2005;25(4):1228–37. https://doi.org/10.1128/MCB.25.4.1228-1237.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Farazi PA, Glickman J, Horner J, Depinho RA. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res. 2006;66(9):4766–73. https://doi.org/10.1158/0008-5472.CAN-05-4608.

    Article  CAS  PubMed  Google Scholar 

  111. Chen YW, Klimstra DS, Mongeau ME, Tatem JL, Boyartchuk V, Lewis BC. Loss of p53 and Ink4a/Arf cooperate in a cell autonomous fashion to induce metastasis of hepatocellular carcinoma cells. Cancer Res. 2007;67(16):7589–96. https://doi.org/10.1158/0008-5472.CAN-07-0381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cullen JM, Sandgren EP, Brinster RL, Maronpot RR. Histologic characterization of hepatic carcinogenesis in transgenic mice expressing SV40 T-antigens. Vet Pathol. 1993;30(2):111–8. https://doi.org/10.1177/030098589303000203.

    Article  CAS  PubMed  Google Scholar 

  113. Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med. 2011;208(10):1963–76. https://doi.org/10.1084/jem.20110198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hopkins BD, Parsons RE. Molecular pathways: intercellular PTEN and the potential of PTEN restoration therapy. Clin Cancer Res. 2014;20(21):5379–83. https://doi.org/10.1158/1078-0432.CCR-13-2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1999;96(11):6199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest. 2004;113(12):1774–83. https://doi.org/10.1172/JCI20513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell. 2007;128(1):157–70. https://doi.org/10.1016/j.cell.2006.11.042.

    Article  CAS  PubMed  Google Scholar 

  118. Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E. Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J. 2005;19(1):115–7. https://doi.org/10.1096/fj.04-1942fje.

    Article  CAS  PubMed  Google Scholar 

  119. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer. 2003;97(8):1929–40. https://doi.org/10.1002/cncr.11266.

    Article  CAS  PubMed  Google Scholar 

  120. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression. Nat Genet. 1998;19(4):348–55. https://doi.org/10.1038/1235.

    Article  PubMed  Google Scholar 

  121. Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/− mice. Cancer Res. 2000;60(13):3605–11.

    CAS  PubMed  Google Scholar 

  122. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A. 1999;96(4):1563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–73. https://doi.org/10.1038/350569a0.

    Article  CAS  PubMed  Google Scholar 

  124. Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002;66(3):407–25, table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Park YM, Choi JY, Byun BH, Cho CH, Kim HS, Kim BS. Telomerase is strongly activated in hepatocellular carcinoma but not in chronic hepatitis and cirrhosis. Exp Mol Med. 1998;30(1):35–40. https://doi.org/10.1038/emm.1998.5.

    Article  CAS  PubMed  Google Scholar 

  126. Nagao K, Tomimatsu M, Endo H, Hisatomi H, Hikiji K. Telomerase reverse transcriptase mRNA expression and telomerase activity in hepatocellular carcinoma. J Gastroenterol. 1999;34(1):83–7.

    Article  CAS  PubMed  Google Scholar 

  127. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997;91(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  128. Lechel A, Holstege H, Begus Y, Schienke A, Kamino K, Lehmann U, et al. Telomerase deletion limits progression of p53-mutant hepatocellular carcinoma with short telomeres in chronic liver disease. Gastroenterology. 2007;132(4):1465–75. https://doi.org/10.1053/j.gastro.2007.01.045.

    Article  CAS  PubMed  Google Scholar 

  129. Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res. 2003;63(16):5021–7.

    CAS  PubMed  Google Scholar 

  130. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. https://doi.org/10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005;121(7):977–90. https://doi.org/10.1016/j.cell.2005.04.014.

    Article  CAS  PubMed  Google Scholar 

  132. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell. 2007;11(2):119–32. https://doi.org/10.1016/j.ccr.2006.12.016.

    Article  CAS  PubMed  Google Scholar 

  133. He G, Karin M. NF-kappaB and STAT3 – key players in liver inflammation and cancer. Cell Res. 2011;21(1):159–68. https://doi.org/10.1038/cr.2010.183.

    Article  CAS  PubMed  Google Scholar 

  134. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–6. https://doi.org/10.1038/nature02924.

    Article  CAS  PubMed  Google Scholar 

  135. Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, et al. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci U S A. 1995;92(7):2572–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM. Experimental models of hepatocellular carcinoma. J Hepatol. 2008;48(5):858–79. https://doi.org/10.1016/j.jhep.2008.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A. 2002;99(18):11854–9. https://doi.org/10.1073/pnas.182412299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nakai H, Fuess S, Storm TA, Muramatsu S, Nara Y, Kay MA. Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol. 2005;79(1):214–24. https://doi.org/10.1128/JVI.79.1.214-224.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6(7):1258–66. https://doi.org/10.1038/sj.gt.3300947.

    Article  CAS  PubMed  Google Scholar 

  140. Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther. 1999;10(10):1735–7. https://doi.org/10.1089/10430349950017734.

    Article  CAS  PubMed  Google Scholar 

  141. Kamimura K, Yokoo T, Abe H, Kobayashi Y, Ogawa K, Shinagawa Y, et al. Image-guided hydrodynamic gene delivery: current status and future directions. Pharmaceutics. 2015;7(3):213–23. https://doi.org/10.3390/pharmaceutics7030213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Aronovich EL, McIvor RS, Hackett PB. The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet. 2011;20(R1):R14–20. https://doi.org/10.1093/hmg/ddr140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wuestefeld T, Pesic M, Rudalska R, Dauch D, Longerich T, Kang TW, et al. A Direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell. 2013;153(2):389–401. https://doi.org/10.1016/j.cell.2013.03.026.

    Article  CAS  PubMed  Google Scholar 

  144. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514(7522):380–4. https://doi.org/10.1038/nature13589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen X, Calvisi DF. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am J Pathol. 2014;184(4):912–23. https://doi.org/10.1016/j.ajpath.2013.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaia Lujambio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molina-Sánchez, P., Lujambio, A. (2019). Experimental Models for Preclinical Research in Hepatocellular Carcinoma. In: Hoshida, Y. (eds) Hepatocellular Carcinoma. Molecular and Translational Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-21540-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21540-8_16

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-21539-2

  • Online ISBN: 978-3-030-21540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics