Skip to main content

ComMute—Towards a Computational Musical Theory of Everything

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11502))

Included in the following conference series:

Abstract

This paper draws future perspectives of music as a comprising cultural achievement of humans. We discuss the role of music for mathematics and physics from Pythagoras to String Theory, its global human presence, transcending specific fields of knowledge in its synthetical force that unifies distant fields of knowledge and action in the concrete and abstract realms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Internet was invented by Tim Berners-Lee at the CERN to coordinate nuclear research efforts globally.

  2. 2.

    Even where music is virtually forbidden, with the Taliban, for example, its force is recognized, and that is why it is forbidden, sad irony.

  3. 3.

    These are photons for the electromagnetic force, W and Z bosons for the weak force, gluons for strong force, and hypothetical gravitons for gravitation.

  4. 4.

    The number of affine transformations on the local score of the software [8, Ch. 49] is

    $$ 10'445'260'466'832'483'579'436'191'905'936'640'000 \approx 1.04453\times 10^{37}. $$
  5. 5.

    Citation form Wikipedia.

References

  1. Amiot, E.: Music Through Fourier Space. Springer Series Computational Music Science. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-45581-5

    Book  MATH  Google Scholar 

  2. Agustín-Aquino, O.A., Junod, J., Mazzola, G.: Computational Counterpoint Worlds. Springer Series Computational Music Science. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-11236-7

    Book  MATH  Google Scholar 

  3. Bars, I., Terning, J.: Extra Dimensions in Space and Time. Springer, New York (2010). https://doi.org/10.1007/978-0-387-77638-5

    Book  MATH  Google Scholar 

  4. http://www.cern.ch

  5. Friberg, A., Bresin, R., Sundberg, J.: Overview of the KTH rule system for music performance. Adv. Exp. Psychol. 2, 145–161 (2006). Special issue on Music Performance

    Google Scholar 

  6. Kinderman, W.: Artaria 195. University of Illinois Press, Urbana and Chicago (2003)

    Google Scholar 

  7. Larson, S.: Musical Forces. Indiana University Press, Bloomington (2012)

    Google Scholar 

  8. Mazzola, G., et al.: The Topos of Music—Geometric Logic of Concepts, Theory, and Performance. Birkhäuser, Basel (2002)

    MATH  Google Scholar 

  9. Mazzola, G., Cherlin, P.B.: Flow, Gesture, and Spaces in Free Jazz-Towards a Theory of Collaboration. Springer Series Computational Music Science. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92195-0

    Book  Google Scholar 

  10. Mazzola, G.: Gestural dynamics in modulation: (towards) a musical string theory. In: Pareyon, G., Pina-Romero, S., Agustin-Aquino, O.A., Lluis-Puebla, E. (eds.) The Musical-Mathematical Mind. Springer Series Computational Music Science, pp. 171–188. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-47337-6_18

    Chapter  Google Scholar 

  11. Mazzola, G.: The Topos of Music II: Performance. Springer Series Computational Music Science. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-64444-8

    Book  Google Scholar 

  12. Mazzola, G., et al.: The Topos of Music III: Gestures. Springer Series Computational Music Science. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-64481-3

    Book  Google Scholar 

  13. Munyaradzi, G., Zimidzi, W.: Comparison of western music and African music. Creat. Educ. 3(2), 193–195 (2012)

    Article  Google Scholar 

  14. Nugroho, G.: Teak Leaves at the Temples. DVD, Trimax Enterprises Film, New York (2007)

    Google Scholar 

  15. Penrose, R.: The Road to Reality. Vintage, London (2002)

    Google Scholar 

  16. Ravikiran, C.N.: Robert morris and the concept of melharmony. Perspect. New Music 52(2), 154–161 (2014)

    Google Scholar 

  17. Schönberg, A.: Harmonielehre (1911). Universal Edition, Wien (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guerino Mazzola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazzola, G. (2019). ComMute—Towards a Computational Musical Theory of Everything. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21392-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21391-6

  • Online ISBN: 978-3-030-21392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics