Skip to main content

Multi-Attribute Probabilistic Linear Discriminant Analysis for 3D Facial Shapes

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

Abstract

Component Analysis (CA) consists of a set of statistical techniques that decompose data to appropriate latent components that are relevant to the task-at-hand (e.g., clustering, segmentation, classification). During the past years, an explosion of research in probabilistic CA has been witnessed, with the introduction of several novel methods (e.g., Probabilistic Principal Component Analysis, Probabilistic Linear Discriminant Analysis (PLDA), Probabilistic Canonical Correlation Analysis). A particular subset of CA methods such as PLDA, inspired by the classical Linear Discriminant Analysis, incorporate the knowledge of data labeled in terms of an attribute in order to extract a suitable discriminative subspace. Nevertheless, while many modern datasets incorporate labels with regards to multiple attributes (e.g., age, ethnicity, weight), existing CA methods can exploit at most a single attribute (i.e., one set of labels) per model. That is, in case multiple attributes are available, one needs to train a separate model per attribute, in effect not exploiting knowledge of other attributes for the task-at-hand. In this light, we propose the first, to the best of our knowledge, Multi-Attribute Probabilistic LDA (MAPLDA), that is able to jointly handle data annotated with multiple attributes. We demonstrate the performance of the proposed method on the analysis of 3D facial shapes, a task with increasing value due to the rising popularity of consumer-grade 3D sensors, on problems such as ethnicity, age, and weight identification, as well as 3D facial shape generation.

Supported by an EPSRC DTA studentship from Imperial College London, EPSRC Project EP/N007743/1 (FACER2VM) and a Google Faculty Award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For brevity of notation, we denote \( a_1,\dots ,a_N\) as \(a_{1:N}\).

References

  1. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  2. Archambeau, C., Delannay, N., Verleysen, M.: Mixtures of robust probabilistic principal component analyzers. Neurocomputing 71(7), 1274–1282 (2008)

    Article  Google Scholar 

  3. Bach, F.R., Jordan, M.I.: A probabilistic interpretation of canonical correlation analysis (2005)

    Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  6. Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., Dunaway, D.: A 3D morphable model learnt from 10,000 faces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5543–5552 (2016)

    Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

    Article  Google Scholar 

  9. Ioffe, S.: Probabilistic linear discriminant analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 531–542. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_41

    Chapter  Google Scholar 

  10. Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  11. Kenny, P., Ouellet, P., Dehak, N., Gupta, V., Dumouchel, P.: A study of interspeaker variability in speaker verification. IEEE Trans. Audio Speech Lang. Process. 16(5), 980–988 (2008)

    Article  Google Scholar 

  12. Klami, A., Virtanen, S., Kaski, S.: Bayesian canonical correlation analysis. J. Mach. Learn. Res. 14(1), 965–1003 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Lawrence, N.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Li, P., Fu, Y., Mohammed, U., Elder, J.H., Prince, S.J.: Probabilistic models for inference about identity. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 144–157 (2012)

    Article  Google Scholar 

  15. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 248 (2015)

    Article  Google Scholar 

  16. Lüthi, M., Gerig, T., Jud, C., Vetter, T.: Gaussian process morphable models. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1860–1873 (2017)

    Article  Google Scholar 

  17. Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recogn. 33(11), 1771–1782 (2000)

    Article  Google Scholar 

  18. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 696–710 (1997)

    Article  Google Scholar 

  19. Nicolaou, M.A., Zafeiriou, S., Pantic, M.: A unified framework for probabilistic component analysis. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 469–484. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_30

    Chapter  Google Scholar 

  20. Prince, S.J., Elder, J.H.: Probabilistic linear discriminant analysis for inferences about identity. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  21. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (TOG) 36(6), 245 (2017)

    Article  Google Scholar 

  22. Roweis, S.: EM algorithms for PCA and SPCA. In: Advances in Neural Information Processing Systems, pp. 626–632 (1998)

    Google Scholar 

  23. Swets, D.L., Weng, J.J.: Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 8, 831–836 (1996)

    Article  Google Scholar 

  24. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  25. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)

    Article  MathSciNet  Google Scholar 

  26. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591. IEEE (1991)

    Google Scholar 

  27. Wang, X., Tang, X.: Dual-space linear discriminant analysis for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II-564–II-569. IEEE (2004)

    Google Scholar 

  28. Wibowo, M.E., Tjondronegoro, D., Zhang, L., Himawan, I.: Heteroscedastic probabilistic linear discriminant analysis for manifold learning in video-based face recognition. In: IEEE Workshop on Applications of Computer Vision (WACV), pp. 46–52. IEEE (2013)

    Google Scholar 

  29. Yu, S., Yu, K., Tresp, V., Kriegel, H.P., Wu, M.: Supervised probabilistic principal component analysis. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 464–473. ACM (2006)

    Google Scholar 

  30. Zhang, Y., Yeung, D.-Y.: Heteroscedastic probabilistic linear discriminant analysis with semi-supervised extension. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 602–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_39

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Moschoglou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 251 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moschoglou, S., Ploumpis, S., Nicolaou, M.A., Zafeiriou, S. (2019). Multi-Attribute Probabilistic Linear Discriminant Analysis for 3D Facial Shapes. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics