Skip to main content

Robust and Efficient Ellipse Fitting Using Tangent Chord Distance

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

Abstract

Ellipse fitting is a fundamental problem in computer vision which has been extensively studied during the past decades. However, this problem still remains unresolved due to many practical challenges such as occlusion, background clutter, noise and outlier, and so forth. In this paper, we introduce a novel geometric distance, called Tangent Chord Distance (TCD), to formulate the ellipse fitting problem. Under the least squares framework, TCD is used as the measure to quantify the fitting error, based on which a nonlinear objective function is established and minimized via the Gauss-Newton method. Compared to existing geometric distance based methods, a key merit of our approach is that, the very time-consuming iterative procedure of finding the counterparts of the given points has a simple closed-form solution in our TCD-based formulation, which can thereby significantly reduce the computational load without sacrificing the performance. Experimental results on both synthetic data and public image datasets have demonstrated the superiority of our method over other compared methods in terms of robustness and efficiency.

Fundamental Research Funds for the Central Universities, SCUT under Grant 2018MS72.

Guangzhou Science and Technology Program under the Grant 201904010299.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://imagelab.ing.unimore.it/imagelab/ellipse/ellipse_dataset.zip.

  2. 2.

    http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/PILU1/demo.html.

  3. 3.

    https://sites.google.com/site/dilipprasad/Source-codes.

  4. 4.

    http://www.users.on.net/~zygmunt.szpak/.

  5. 5.

    https://github.com/sebdi/ellipse-fitting.

References

  1. Ahn, S.J., Rauh, W., Warnecke, H.J.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recogn. 34(12), 2283–2303 (2001)

    Article  Google Scholar 

  2. Al-Subaihi, I., Watson, G.: The use of the \(l_1\) and \(l_{\infty }\) norms in fitting parametric curves and surfaces to data. Appl. Numer. Anal. Comput. Math. 1(2), 363–376 (2004)

    Article  MathSciNet  Google Scholar 

  3. Al-Subaihi, I., Watson, G.: Fitting parametric curves and surfaces by \(l_{\infty }\) distance regression. BIT Numer. Math. 45(3), 443–461 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bai, X., Sun, C., Zhou, F.: Splitting touching cells based on concave points and ellipse fitting. Pattern Recogn. 42(11), 2434–2446 (2009)

    Article  Google Scholar 

  5. Bookstein, F.L.: Fitting conic sections to scattered data. Comput. Graph. Image Process. 9(1), 56–71 (1979)

    Article  Google Scholar 

  6. Cakir, H.I., Topal, C., Akinlar, C.: An occlusion-resistant ellipse detection method by joining coelliptic arcs. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 492–507. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_31

    Chapter  Google Scholar 

  7. Chen, S., Xia, R., Zhao, J., Chen, Y., Hu, M.: A hybrid method for ellipse detection in industrial images. Pattern Recogn. 68, 82–98 (2017)

    Article  Google Scholar 

  8. Chia, A.Y.S., Leung, M.K., Eng, H.L., Rahardja, S.: Ellipse detection with Hough transform in one dimensional parametric space. In: IEEE International Conference on Image Processing, pp. V–333. IEEE (2007)

    Google Scholar 

  9. Chia, A.Y.S., Rajan, D., Leung, M.K., Rahardja, S.: Object recognition by discriminative combinations of line segments, ellipses, and appearance features. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1758–1772 (2012)

    Article  Google Scholar 

  10. Dong, H., Prasad, D.K., Chen, I.M.: Accurate detection of ellipses with false detection control at video rates using a gradient analysis. Pattern Recogn. 81, 112–130 (2018)

    Article  Google Scholar 

  11. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  12. Ellis, T., Abbood, A., Brillault, B.: Ellipse detection and matching with uncertainty. In: Mowforth, P. (ed.) British Machine Vision Conference, pp. 136–144. Springer, London (1991). https://doi.org/10.1007/978-1-4471-1921-0_18

    Chapter  Google Scholar 

  13. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  14. Fornaciari, M., Prati, A., Cucchiara, R.: A fast and effective ellipse detector for embedded vision applications. Pattern Recogn. 47(11), 3693–3708 (2014)

    Article  Google Scholar 

  15. Han, J.H., Kóczy, L.T., Poston, T.: Fuzzy Hough transform. In: Second IEEE International Conference on Fuzzy Systems, pp. 803–808. IEEE (1993)

    Google Scholar 

  16. Harker, M., O’Leary, P., Zsombor-Murray, P.: Direct type-specific conic fitting and eigenvalue bias correction. Image Vis. Comput. 26(3), 372–381 (2008)

    Article  Google Scholar 

  17. Jia, Q., Fan, X., Luo, Z., Song, L., Qiu, T.: A fast ellipse detector using projective invariant pruning. IEEE Trans. Image Process. 26(8), 3665–3679 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kanatani, K.: Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 320–326 (1994)

    Article  Google Scholar 

  19. Kanatani, K.: Ellipse fitting with hyperaccuracy. IEICE Trans. Inf. Syst. 89(10), 2653–2660 (2006)

    Article  Google Scholar 

  20. Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic hough transform. Pattern Recogn. 24(4), 303–316 (1991)

    Article  MathSciNet  Google Scholar 

  22. Kovesi, P.D.: MATLAB and Octave functions for computer vision and image processing (2000). http://www.peterkovesi.com/matlabfns/

  23. Kwolek, B.: Stereovision-based head tracking using color and ellipse fitting in a particle filter. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 192–204. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_16

    Chapter  Google Scholar 

  24. Leavers, V.F.: Shape Detection in Computer Vision using the Hough Transform. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4471-1940-1

    Book  MATH  Google Scholar 

  25. Lu, W., Tan, J.: Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT). Pattern Recogn. 41(4), 1268–1279 (2008)

    Article  Google Scholar 

  26. Maini, E.S.: Enhanced direct least square fitting of ellipses. Int. J. Pattern Recogn. Artif. Intell. 20(06), 939–953 (2006)

    Article  Google Scholar 

  27. McLaughlin, R.A.: Randomized hough transform: improved ellipse detection with comparison. Pattern Recogn. Lett. 19(3–4), 299–305 (1998)

    Article  Google Scholar 

  28. Prasad, D.K., Leung, M.K., Cho, S.Y.: Edge curvature and convexity based ellipse detection method. Pattern Recogn. 45(9), 3204–3221 (2012)

    Article  Google Scholar 

  29. Prasad, D.K., Leung, M.K., Quek, C.: Ellifit: an unconstrained, non-iterative, least squares based geometric ellipse fitting method. Pattern Recogn. 46(5), 1449–1465 (2013)

    Article  Google Scholar 

  30. Rosin, P.L.: A note on the least squares fitting of ellipses. Pattern Recogn. Lett. 14(10), 799–808 (1993)

    Article  Google Scholar 

  31. Rosin, P.L., West, G.A.W.: Nonparametric segmentation of curves into various representations. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1140–1153 (1995)

    Article  Google Scholar 

  32. Soetedjo, A., Yamada, K.: Fast and robust traffic sign detection. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1341–1346. IEEE (2005)

    Google Scholar 

  33. Szpak, Z.L., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with the Sampson distance. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 87–100. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_7

    Chapter  Google Scholar 

  34. Wang, Y., He, Z., Liu, X., Tang, Z., Li, L.: A fast and robust ellipse detector based on top-down least-square fitting. In: British Machine Vision Conference, pp. 156.1–156.12. BMVA Press (2015)

    Google Scholar 

  35. Watson, G.: On the Gauss-Newton method for \(l_1\) orthogonal distance regression. IMA J. Numer. Anal. 22(3), 345–357 (2002)

    Article  MathSciNet  Google Scholar 

  36. Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized Hough transform (RHT). Pattern Recogn. Lett. 11(5), 331–338 (1990)

    Article  Google Scholar 

  37. Yip, R.K., Tam, P.K., Leung, D.N.: Modification of Hough transform for circles and ellipses detection using a 2-dimensional array. Pattern Recogn. 25(9), 1007–1022 (1992)

    Article  Google Scholar 

  38. Yu, J., Kulkarni, S.R., Poor, H.V.: Robust ellipse and spheroid fitting. Pattern Recogn. Lett. 33(5), 492–499 (2012)

    Article  Google Scholar 

  39. Yuen, H., Illingworth, J., Kittler, J.: Detecting partially occluded ellipses using the Hough transform. Image Vis. Comput. 7(1), 31–37 (1989)

    Article  Google Scholar 

  40. Zhang, S.C., Liu, Z.Q.: A robust, real-time ellipse detector. Pattern Recogn. 38(2), 273–287 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Natural Science Foundation of China under the Grant 61703166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Gang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ou, J., Yu, JG., Gao, C., Xiao, L., Liu, Z. (2019). Robust and Efficient Ellipse Fitting Using Tangent Chord Distance. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics