Skip to main content

Macroscopic Electromagnetics

  • Chapter
  • First Online:
Electromagnetic and Optical Pulse Propagation

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 224))

  • 864 Accesses

Abstract

In the classical Maxwell–Lorentz theory, matter is regarded as being composed of point charges (e.g., point electrons and point protons and nuclei) that produce microscopic electric and magnetic fields. The microscopic equations of electromagnetics given in Eqs. (2.33)–(2.36) together with the Lorentz force relation given in Eq. (2.21) describe the detailed classical behavior of the charged particles and fields, as presented in Chaps. 2 and 3. The macroscopic equations of electromagnetics, in turn, describe the average behavior of the charged particles and fields. It is then expected that, through a suitable averaging procedure, the macroscopic electromagnetic field equations may be derived from the microscopic equations, a viewpoint that was initially developed by H. A. Lorentz in 1906 and has since been extended by J. H. van Vleck, R. Russakoff, and F. N. H. Robinson.

A curious case of coincidence.” H. A. Lorentz on the Lorentz–Lorenz relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that the quantity ∇⋅P(r, t) is sometimes referred to as the bound charge density. In order to avoid confusion with the bound charge density described in Eq. (4.34), the quantity ∇⋅P(r, t) is referred to here by its proper name, the polarization charge density.

  2. 2.

    Notable exceptions are bi-anisotropic and bi-isotropic materials that exhibit chirality [14, 15]. A brief description of their general formulation is included at the end of this section.

  3. 3.

    A simple polarizable dielectric is defined here as one for which the quadrupole and all higher-order moments of the molecular charge distribution identically vanish.

  4. 4.

    This equation is taken here as the definition of a simple magnetizable medium.

  5. 5.

    Lorentz [3] attributed Eq. (4.176) with j = 1 to the earlier work by R. Clausius (1879) and O. F. Mossotti (1850); see p. 50 of [43].

  6. 6.

    See Eq. (1.20) with complex phase velocity given by v(ω) = cn(ω), where n(ω) ≡ (𝜖(ω)∕𝜖 0)1∕2 is the complex index of refraction with μμ 0 = 1. This notation for the absorption coefficient should not be confused with that for the molecular polarizability, as each is determined by the context it is being used in.

  7. 7.

    This maximum frequency is below the frequency f P ≡ 1∕t P ≃ 1.855 × 1043 s−1 associated with the Planck time \(t_P \equiv \sqrt {\hbar G/c^5} \simeq 5.39\times 10^{-44}\,\mbox{s}\), a unique combination of the gravitational constant G, the speed of light constant c in special relativity, and the rationalized Planck constant ħ ≡ h∕2π from quantum theory. The Planck time supposedly provides an estimate of the quantized time scale at which quantum gravitational effects may appear. Smaller time intervals would then be meaningless, implying that frequencies above f P could not possibly exist. A more realistic bound is obtained from the realization that macroscopic quantities such as the index of refraction become meaningless when the wavelength decreases below intermolecular distances, so that f max ≈ 1 × 1020 s−1 for water. .

References

  1. J. C. Maxwell, “A dynamical theory of the electromagnetic field,” Phil. Trans. Roy. Soc. (London), vol. 155, pp. 450–521, 1865.

    Google Scholar 

  2. J. C. Maxwell, A Treatise on Electricity and Magnetism. Oxford: Oxford University Press, 1873.

    MATH  Google Scholar 

  3. H. A. Lorentz, The Theory of Electrons. Leipzig: Teubner, 1906. Ch. IV.

    Google Scholar 

  4. J. H. van Vleck, Electric and Magnetic Susceptibilities. London: Oxford University Press, 1932.

    MATH  Google Scholar 

  5. R. Russakoff, “A derivation of the macroscopic Maxwell equations,” Am. J. Phys., vol. 38, no. 10, pp. 1188–1195, 1970.

    Article  ADS  Google Scholar 

  6. F. N. H. Robinson, Macroscopic Electromagnetism. Oxford: Pergamon, 1973.

    Google Scholar 

  7. E. M. Purcell, Electricity and Magnetism. New York: McGraw-Hill, 1965. pp. 344–347.

    Google Scholar 

  8. C. J. F. Böttcher, Theory of Electric Polarization: Volume I. Dielectrics in Static Fields. Amsterdam: Elsevier, second ed., 1973.

    Google Scholar 

  9. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization: Volume II. Dielectrics in Time-Dependent Fields. Amsterdam: Elsevier, second ed., 1978.

    Chapter  Google Scholar 

  10. J. D. Jackson, Classical Electrodynamics. New York: John Wiley & Sons, third ed., 1999.

    MATH  Google Scholar 

  11. P. Penfield and H. A. Haus, Electrodynamics of Moving Media. Cambridge, MA: M.I.T. Press, 1967.

    Google Scholar 

  12. R. Resnick, Introduction to Special Relativity. New York: John Wiley & Sons, 1968.

    Google Scholar 

  13. J. V. Bladel, Relativity and Engineering. Berlin-Heidelberg: Springer-Verlag, 1984.

    Book  Google Scholar 

  14. J. A. Kong, Theory of Electromagnetic Waves. Wiley, 1975. Chapter 1.

    Google Scholar 

  15. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. Boston: Artech House, 1994. Ch. 6.

    Google Scholar 

  16. H. M. Nussenzveig, Causality and Dispersion Relations. New York: Academic, 1972. Ch. 1.

    Google Scholar 

  17. R. W. Whitworth and H. V. Stopes-Roe, “Experimental demonstration that the couple on a bar magnet depends on H, not B,” Nature, vol. 234, pp. 31–33, 1971.

    Article  ADS  Google Scholar 

  18. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons. Berlin-Heidelberg: Springer-Verlag, second ed., 1984.

    Google Scholar 

  19. B. D. H. Tellegen, “The gyrator, a new electric network element,” Philips Res. Rep., vol. 3, pp. 81–101, 1948.

    MathSciNet  Google Scholar 

  20. J. S. Toll, “Causality and the dispersion relation: Logical foundations,” Phys. Rev., vol. 104, no. 6, pp. 1760–1770, 1950.

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Grünbaum, “Is preacceleration of particles in Dirac’s electrodynamics a case of backward causation? The myth of retrocausation in classical electrodynamics,” Philosophy of Science, vol. 43, pp. 165–201, 1976.

    Article  Google Scholar 

  22. B. Y. Hu, “Kramers-Kronig in two lines,” Am. J. Phys., vol. 57, no. 9, p. 821, 1989.

    Article  ADS  Google Scholar 

  23. J. Plemelj, “Ein Ergänzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend,” Monatshefte für Mathematik und Physik, vol. 19, pp. 205–210, 1908.

    Article  MathSciNet  Google Scholar 

  24. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals. London: Oxford University Press, 1939. Ch. I.

    Google Scholar 

  25. H. A. Kramers, “La diffusion de la lumière par les atomes,” in Estratto dagli Atti del Congresso Internazional de Fisici Como, pp. 545–557, Bologna: Nicolo Zonichelli, 1927.

    Google Scholar 

  26. R. de L. Kronig, “On the theory of dispersion of X-Rays,” J. Opt. Soc. Am. & Rev. Sci. Instrum., vol. 12, no. 6, pp. 547–557, 1926.

    Article  ADS  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media. Oxford: Pergamon, 1960. Ch. IX.

    Google Scholar 

  28. V. Lucarini, F. Bassani, K.-E. Peiponen, and J. J. Saarinen, “Dispersion theory and sum rules in linear and nonlinear optics,” Riv. Nuovo Cimento, vol. 26, pp. 1–127, 2003.

    Google Scholar 

  29. P. Drude, Lehrbuch der Optik. Leipzig: Teubner, 1900. Ch. V.

    Google Scholar 

  30. P. Debye, Polar Molecules. New York: Dover, 1929.

    MATH  Google Scholar 

  31. J. McConnel, Rotational Brownian Motion and Dielectric Theory. London: Academic, 1980.

    Google Scholar 

  32. K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics. I. Alternating current characteristics,” J. Chem. Phys., vol. 9, pp. 341–351, 1941.

    Article  ADS  Google Scholar 

  33. H. Fröhlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss. Oxford: Oxford University Press, 1949.

    MATH  Google Scholar 

  34. K. Moten, C. H. Durney, and T. G. Stockham, “Electromagnetic pulse propagation in dispersive planar dielectrics,” Bioelectromagnetics, vol. 10, pp. 35–49, 1989.

    Article  Google Scholar 

  35. R. Albanese, J. Penn, and R. Medina, “Short-rise-time microwave pulse propagation through dispersive biological media,” J. Opt. Soc. Am. A, vol. 6, pp. 1441–1446, 1989.

    Article  ADS  Google Scholar 

  36. K. Moten, C. H. Durney, and T. G. Stockham, “Electromagnetic pulsed-wave radiation in spherical models of dispersive biological substances,” Bioelectromagnetics, vol. 12, p. 319, 1991.

    Article  Google Scholar 

  37. J. E. K. Laurens and K. E. Oughstun, “Electromagnetic impulse response of triply-distilled water,” in Ultra-Wideband, Short-Pulse Electromagnetics 4 (E. Heyman, B. Mandelbaum, and J. Shiloh, eds.), pp. 243–264, New York: Plenum, 1999.

    Google Scholar 

  38. P. D. Smith and K. E. Oughstun, “Ultrawideband electromagnetic pulse propagation in triply-distilled water,” in Ultra-Wideband, Short-Pulse Electromagnetics 4 (E. Heyman, B. Mandelbaum, and J. Shiloh, eds.), pp. 265–276, New York: Plenum, 1999.

    Google Scholar 

  39. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. New York: Wiley-Interscience, 1984. Ch. 9.

    Google Scholar 

  40. C. D. MacDonald and K. E. Oughstun, “Dispersion relation analysis of 𝜖(ω) data for H 2 O,” in 2016 IEEE Antennas & Propagation Soc. International Symposium, 2016. Paper #TUP-A2.2P.5.

    Google Scholar 

  41. H. A. Lorentz, “Über die Beziehungzwischen der Fortpflanzungsgeschwindigkeit des Lichtes der Körperdichte,” Ann. Phys., vol. 9, pp. 641–665, 1880.

    Article  Google Scholar 

  42. L. Lorenz, “Über die Refractionsconstante,” Ann. Phys., vol. 11, pp. 70–103, 1880.

    Article  Google Scholar 

  43. J. W. F. Brown, “Dielectrics,” in Handbuch der Physik: Dielektrika, vol. XVII, Berlin: Springer-Verlag, 1956.

    Google Scholar 

  44. M. Born and E. Wolf, Principles of Optics. Cambridge: Cambridge University Press, seventh (expanded) ed., 1999.

    Google Scholar 

  45. M. Y. Rocard, “x,” J. Phys. Radium, vol. 4, pp. 247–250, 1933.

    Article  Google Scholar 

  46. J. G. Powles, “x,” Trans. Faraday Soc., vol. 44, pp. 802–806, 1948.

    Article  Google Scholar 

  47. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals. London: Oxford University Press, second ed., 1948. Sect. 11.8.

    Google Scholar 

  48. H. Fröhlich, “Remark on the calculation of the static dielectric constant,” Physica, vol. 22, pp. 898–904, 1956.

    Article  ADS  Google Scholar 

  49. B. K. P. Scaife, Principles of Dielectrics. Oxford: Oxford University Press, 1989.

    Google Scholar 

  50. A. D. Yaghjian, Relativistic Dynamics of a Charged Sphere. Berlin-Heidelberg: Springer-Verlag, 1992.

    Book  Google Scholar 

  51. J. M. Stone, Radiation and Optics, An Introduction to the Classical Theory. New York: McGraw-Hill, 1963.

    Google Scholar 

  52. L. Brillouin, “Über die fortpflanzung des licht in disperdierenden medien,” Ann. Phys., vol. 44, pp. 204–240, 1914.

    Google Scholar 

  53. L. Brillouin, Wave Propagation and Group Velocity. New York: Academic, 1960.

    MATH  Google Scholar 

  54. K. E. Oughstun and N. A. Cartwright, “On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion,” Opt. Exp., vol. 11, no. 13, pp. 1541–1546, 2003.

    Article  ADS  Google Scholar 

  55. K. E. Oughstun and N. A. Cartwright, “On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion: addendum,” Opt. Exp., vol. 11, no. 21, pp. 2791–2792, 2003.

    Article  ADS  Google Scholar 

  56. R. Loudon, The Quantum Theory of Light. London: Oxford University Press, 1973.

    MATH  Google Scholar 

  57. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory & Tech., vol. 47, pp. 2075–2084, 1999.

    Article  ADS  Google Scholar 

  58. P. A. Sturrock, Plasma Physics. Cambridge: Cambridge University Press, 1994.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oughstun, K.E. (2019). Macroscopic Electromagnetics. In: Electromagnetic and Optical Pulse Propagation . Springer Series in Optical Sciences, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-030-20835-6_4

Download citation

Publish with us

Policies and ethics