Skip to main content

Cadmium (Cd): An Emerging Regulatory Metal with Critical Role in Cell Signalling and Plant Morphogenesis

  • Chapter
  • First Online:
Plant-Metal Interactions

Abstract

Cadmium is a toxic metal whose contamination in the environment has resulted from various industrial and agricultural activities like coal combustion, nickel-cadmium batteries, fluorescent paints, fertilisers, etc. Cadmium toxicity to plants leads to various anatomical, physiological and biochemical changes. Plants show retarded growth and productivity. However, there are certain unique examples of cadmium playing the role of essential metal like zinc in a diatom. It is also considered that cadmium accumulation by plants acts as a deterrent for insects and therefore protects plants from herbivory. The emerging evidences suggest that cadmium affects important regulatory functions in plants and brings about changes in plant phenotype and growth. A number of factors take part in signalling of cadmium stress. These include reactive oxygen and nitrogen species; hormones like jasmonic acid, brassinosteroids, salicylic acid, ethylene, etc.; and microRNAs. This chapter discusses toxic and regulatory functions of cadmium in plants with an emphasis on cadmium signalling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MAM, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I (2015) Jacks of metal/metalloid chelation trade in plants – an overview. Front Plant Sci 6:192. https://doi.org/10.3389/fpls.2015.00192

    Article  PubMed  PubMed Central  Google Scholar 

  • Bączek-Kwinta R, Bartoszek A, Kusznierewicz B, Antonkiewicz J (2011) Physiological response of plants and cadmium accumulation in heads of two cultivars of white cabbage. J Elem 16:355–364

    Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  • Bækgaard L, Mikkelsen MD, Sørensen DM, Hegelund JN, Persson DP, Mills RF, Yang Z, Husted S, Andersen JP, Buch-Pedersen MJ, Schjoerring JK, Williams LE, Palmgren MG (2010) A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem 285(41):31243–31252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balestrasse K, Gallego S, Tomaro M (2004) Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant Soil 262(1/2):373–381

    Article  CAS  Google Scholar 

  • Barbosa JS, Cabral TM, Ferreira DN, Agnez-Lima LF, de Medeiros SB (2010) Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotox Environ Safe 73(3):320–325

    Article  CAS  Google Scholar 

  • Barcelò J, Vazquez MD, Poschenrieder C (1988) Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Phytol 108:37–49

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34

    Article  CAS  Google Scholar 

  • Bettinelli M, Baroni U, Pastorelli N (1988) Determination of arsenic, cadmium, lead, antimony, selenium and thallium in coal fly ash using the stabilised temperature platform furnace and Zeeman-effect background correction. J Anal At Spectrom 3(7):1005–1011

    Article  Google Scholar 

  • Bidar G, Verdin A, Garçon G, Pruvot C, Laurelle F, Grandmougin-Ferjani A, Douay F, Shirali P (2008) Changes in fatty acid composition and content of two plants (Lolium perenne and Trifolium repens) grown during 6 and 18 months in a metal (Pb, Cd, Zn) contaminated field. Water Air Soil Pollut 192:281–291

    Article  CAS  Google Scholar 

  • Borišev M, Pajević S, Nikolić N, Pilipović A, Krstić B, Orlović S (2009) Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Pol J Environ Stud 18(4):553–561

    Google Scholar 

  • Cao S, Chen Z, Liu G, Jiang L, Yuan H, Ren G, Bian X, Jian H, Ma X (2009) The Arabidopsis ethylene-insensitive 2 gene is required for lead resistance. Plant Physiol Biochem 47:308–312

    Article  CAS  PubMed  Google Scholar 

  • Cardinale F, Meskiene I, Ouaked F, Hirt H (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14:703–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang J, Shi Y, Zhao MQ, Chi GY (2011) Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Bot Stud 52:41–46

    CAS  Google Scholar 

  • Chen J, Yan Z, Li X (2014) Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotox Environ Safe 104:349–356

    Article  CAS  Google Scholar 

  • Chmielowska-Bąk J, Lefèvre I, Lutts S, Deckert J (2013) Short-term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170:1585–1594

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  PubMed  Google Scholar 

  • di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • dos Santos RW, Schmidt EC, de P Martins R, Latini A, Maraschin M, Horta PA, Bouzon ZL (2012) Effects of cadmium on growth, photosynthetic pigments, photosynthetic performance, biochemical parameters and structure of chloroplasts in the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales). Am J Plant Sci 3:1077–1084

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Ding YF, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium responsive microRNAs in rice (Oryza sativa). J Exp Bot 62(10):3563–3573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebbs S, Uchil S (2008) Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Photosynthetica 46:49–55

    Article  CAS  Google Scholar 

  • Elobeid M, Göbel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63(3):1413–1421

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2012) Managing the cellular redox hub in photosynthetic organisms. Plant Cell Environ 35:199–201

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Chang J, Chen R, Li H, Lu H, Tao L, Xiong J (2016) Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. Rice 9:39. https://doi.org/10.1186/s12284-016-0112-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Morales P, Saceda M, Kenney N, Kim N, Salomon DS, Gottardis MM, Solomon HB, Sholler PF, Jordan VC, Martin MB (1994) Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem 269:16896–16901

    CAS  PubMed  Google Scholar 

  • Gondor OK, Pál M, Darkó É, Janda T, Szalai G (2016) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLoS One 11(8):e0160157. https://doi.org/10.1371/journal.pone.0160157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML (2010) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  Google Scholar 

  • Gupta VK, Potalia BS (1990) Zinc-cadmium interaction in wheat. J Indian Soc Soil Sci 38:454–456

    Google Scholar 

  • Hacisalihoglu G, Hart JJ, Wang YH, Cakmak I, Kochian LV (2003) Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiol 131:595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakmaoui A, Atera M, Bóka K, Barón M (2007) Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on Salix purpurea and Phragmites australis. Zeitschr Naturforsch C 62(5–6):417–426

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Wang S, Zhao N, Deng S, Zhao C, Li N, Sun J, Zhao R, Yi H, Shen X, Chen S (2016) Exogenous abscisic acid alleviates cadmium toxicity by restricting Cd2+ influx in Populus euphratica cells. J Plant Growth Regul 35:827–837

    Article  CAS  Google Scholar 

  • Haouari CC, Nasraoui AH, Bouthour D, Houda MD, Daieb CB, Mnai J, Gouia H (2012) Response of tomato (Solanum lycopersicon) to cadmium toxicity: growth, element uptake, chlorophyll content and photosynthesis rate. African J Plant Sci 6(1):1–7

    CAS  Google Scholar 

  • Hassan Z, Aarts MGM (2011) Opportunities and feasibilities for biotechnological improvement of Zn,Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63

    Article  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    Article  CAS  PubMed  Google Scholar 

  • He X, Zheng W, Cao F, Wu F (2016) Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress. Sci Rep 6:32805. https://doi.org/10.1038/srep32805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Vásquez A, Salinas P, Holuigue L (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci 5:171. https://doi.org/10.3389/fpls.2015.00171

    Article  Google Scholar 

  • Höfer N, Diel P, Wittsiepe J, Wilhelm M, Kluxen FM, Degen GH (2010) Investigations on the estrogenic activity of the metallohormone cadmium in the rat intestine. Arch Toxicol 84:541–552

    Article  PubMed  CAS  Google Scholar 

  • Horemans N, Guisez Y, Vangronsveld J, Cuypers A (2009) Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. J Plant Physiol 166:1982–1992

    Article  PubMed  CAS  Google Scholar 

  • Horváth G, Droppa M, Oravecz Á, Raskin V, Marder J (1996) Formation of the photosynthetic apparatus during greening of cadmium-poisoned barley leaves. Planta 199(2):238–243

    Article  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Huang YH, Shih CM, Huang CJ, Lin CM, Chou CM, Tsai ML, Liu TP, Chiu JF, Chen CT (2006) Effects of cadmium on structure and enzymatic activity of Cu, Zn-SOD and oxidative status in neural cells. J Cell Biochem 98:577–589

    Article  CAS  PubMed  Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899

    Article  CAS  PubMed  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:2339–2364

    Article  Google Scholar 

  • Jiang F, Ma DY, Zhao FJ, McGrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167(3):805–814

    Article  CAS  PubMed  Google Scholar 

  • Joshi MK, Mohanty P (2004) Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants. In: Papageorgiou GC (ed) Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. Springer, Dordrecht, pp 637–661

    Chapter  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soil and plants, 2nd edn. CRC Press, Boca Raton, pp 131–142

    Google Scholar 

  • Katrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  CAS  Google Scholar 

  • Kerkeb L, Mukherjee I, Chatterjee I, Lahner B, Salt DE, Connolly EL (2008) Iron-induced turnover of the Arabidopsis iron-regulated transporter1 metal trans-porter requires lysine residues. Plant Physiol 146:1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusznierewicz B, Bączek-Kwinta R, Bartoszek A, Piekarska A, Huk A, Manikowska A, Antonkiewicz J, Konieczka P (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ Toxicol Chem 31(11):2482–2489

    Article  CAS  PubMed  Google Scholar 

  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci 97(9):4627–4631

    Article  CAS  PubMed  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from a marine diatom. Nature 435:42

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Dolittle JJ (2006) Investigation of cadmium and zinc interactions in soils using desorption isotherms. Korean J Environ Agric 25:157–163

    Article  Google Scholar 

  • Li Y, Zhang X, Yang Y, Duan B (2012) Soil cadmium toxicity and nitrogen deposition differently affect growth and physiology in Toxicodendron vernicifluum seedlings. Acta Physiol Plant. https://doi.org/10.1007/s11738-012-1094-8

    Article  CAS  Google Scholar 

  • Liu M-Q, Yanai J, Jiang R-F, Zhang F, McGrath SP, Zhao F-J (2008) Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere 71:1276–1283

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Tang Y, Qiu R, Ying R, Ge R, Ji X (2016) Responses of carbonic anhydrase to cadmium in the zinc/cadmium hyperaccumulator Picris divaricata Vant. Pedosphere 26(5):709–716

    Article  Google Scholar 

  • Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162(12):1338–1346

    Article  CAS  PubMed  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gómez M, Del Río LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54(2):249–259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings Plant Physiol 132(1):272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojiri A (2011) The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. J Environ Sci 5(13):17–22

    Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010) Heavy metals in plants: phytoremediation: plants used to remediate heavy metal pollution. Agric Biol J N Am 1(1):40–46

    CAS  Google Scholar 

  • Murakami M, Ae N, Ishikawa S (2007) Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.) and maize (Zea mays L.). Environ Pollut 145:96–103

    Article  CAS  PubMed  Google Scholar 

  • Oomen RJFJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H et al (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    Article  CAS  PubMed  Google Scholar 

  • Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouzounidou G, Moustakas M, Eleftheriou EP (1997) Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Contam Toxicol 32:154–160

    Article  CAS  PubMed  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  CAS  Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar SMP, Mujib A, Fatma T (2011) Genotoxic impact of cadmium on root meristem of Vicia faba L. Russ Agric Sci 37(2):115–119

    Article  Google Scholar 

  • Pawlak S, Firych A, Rymer K, Deckert J (2009) Cu, Zn-superoxide dismutase is differently regulated by cadmium and lead in roots of soybean seedlings. Acta Physiol Plant 31:741–747

    Article  CAS  Google Scholar 

  • Per TS, Khan NA, Masood A, Fatma M (2016) Methyl jasmonate alleviates cadmium-induced photosynthetic damages through increased s-assimilation and glutathione production in mustard. Front Plant Sci 7:1933. https://doi.org/10.3389/fpls.2016.01933

    Article  PubMed  PubMed Central  Google Scholar 

  • Pivetz BE (2001) Ground water issue 2001: phytoremediation of contaminated soil and ground water at hazardous waste sites. National Risk Management Research Laboratory, Ada, Oklahoma, pp 1–36

    Google Scholar 

  • Poschenrieder C, Tolrá R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11(6):288–295

    Article  CAS  PubMed  Google Scholar 

  • Reichman SM (2000) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. The Australian Minerals and Energy Environment Foundation, Melbourne, pp 23–24

    Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel J-P, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53(371):1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Becerril F, Metwally A, Martin-Laurent F, Van Tuinen D, Dietz K-J, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular responses to cadmium in roots of Pisum sativum L. Water Air Soil Pollut 168:171–186

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano P-S, Risueño M-C, del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150(1):229–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant Cell Environ 26:1657–1672

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Sarwar N, Saifullah SM, Sukhdev H, Munir Z, Asif N, Sadia B, Ghulam F (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants (Review). J Sci Food Agric 90:925–937

    CAS  PubMed  Google Scholar 

  • Sasaki H, Hirose T, Watanabe Y, Ohsugi R (1998) Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol 118:929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellingen K, Van Der Straeten D, Vandenbussche F, Prinsen E, Remans T, Vangronsveld J et al (2014) Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biol 14:214. https://doi.org/10.1186/s12870-014-0214-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellingen K, Van Der Straeten D, Remans T, Vangronsveld J, Keunen E, Cuypers A (2015) Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana. Plant Sci 239:137–146

    Article  CAS  PubMed  Google Scholar 

  • Scoullos MJ (2001) Mercury, cadmium, lead: handbook for sustainable heavy metals policy and regulation. Springer, Netherlands, pp 104–116. ISBN 978-1-4020-0224-3

    Google Scholar 

  • Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178(2):130–139

    Article  CAS  Google Scholar 

  • Soltan ME, Rashed MN (2003) Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations, Adv Environ Res 7(2):321–334

    Article  CAS  Google Scholar 

  • Stroiński A, Chadzinikolau T, Giżewska K, Zielezińska M (2010) ABA or cadmium induced phytochelatin synthesis in potato tubers. Biol Plant 54:117–120

    Article  CAS  Google Scholar 

  • Stroiński A, Giżewska K, Zielezińska M (2013) Abscisic acid is required in transduction of cadmium signal to potato roots. Biol Plant 57:121–127

    Article  CAS  Google Scholar 

  • Szczygłowska M, Bodnar M, Namieśnik J, Konieczka P (2014) The use of vegetables in the biomonitoring of cadmium and lead pollution in the environment. Crit Rev Anal Chem 44:2–15

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK (2011) Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav 6(11):1813–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Yao A, Yuan M, Tang Y, Liu J, Liu X, Qiu R (2016) Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium. Chemosphere 164:190–200

    Article  CAS  PubMed  Google Scholar 

  • Tao S, Sun L, Ma C, Li L, Li G, Hao L (2013) Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium. Plant Soil 372:309–318

    Article  CAS  Google Scholar 

  • Vázquez MD, Poschenrieder CH, Barceló J (1992) Ultrastructural effects and localization of low cadmium concentrations in bean roots. New Phytol 120:215–226

    Article  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhard N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  PubMed  Google Scholar 

  • Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A et al (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 579:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Villiers F, Jourdain A, Bastein O, Leonhardt N, Fujioka S, Tichtincky G, Parcy F, Bouurguinon J, Hugouvieux V (2012) Evidences for functional interaction between brassinosteroids and Cd response in Arabidopsis thaliana. J Exp Bot 63:1185–1200

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Part II microlocalization and cellular effects of cadmium. Environ Exp Bot 58:25–40

    Article  CAS  Google Scholar 

  • Wang MJ, Wang WX (2009) Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction. Aquat Toxicol 95:99–107

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Su M-Y, Chen Y-H, Lin F-F, Luo D, Gao S-F (2006) Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ Pollut 144(1):127–135

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhao SC, Liu RL, Zhou W, Jin JN (2009) Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica 47(2):277–283

    Article  CAS  Google Scholar 

  • Wang J, Lin L, Luo L, Liao M, Lv X, Wang Z, Liang D, Xia H, Wang X, Lai Y, Tang Y (2016) The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum. Environ Monit Assess 188:182. https://doi.org/10.1007/s10661-016-5194-6

    Article  CAS  PubMed  Google Scholar 

  • Wani BA, Khan A, Bodha RH (2011) Salix: a viable option for phytoremediation. Afr J Environ Sci Technol 5(8):567–571

    Google Scholar 

  • Wua F, Zhang G, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50:67–78

    Article  CAS  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicelluloses content in root cell wall. Planta 230:755–765

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and induces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Yan L, Zhai Q, Wei J, Li S, Wang B et al (2013) Role of tomato lipoxygenase in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9(12):e1003964. https://doi.org/10.1371/journal.pgen.1003964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Zhang W, Chen J (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol Plant 59:373. https://doi.org/10.1007/s10535-015-0491-4

    Article  CAS  Google Scholar 

  • Yoneyama T, Ishikawa S, Fujimaki S (2015) Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Int J Mol Sci 16:19111–19129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawoznik M, Groppa MD, Tomaro ML, Benavides MP (2007) Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci 173:190–197

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542

    Article  CAS  PubMed  Google Scholar 

  • Zhu R, Macfie SM, Ding Z (2008) Effects of cadmium on photosynthetic oxygen evolution from single stomata in Brassica juncea (L.) Czern. Langmuir 24(24):14261–14268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Bączek-Kwinta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bączek-Kwinta, R. (2019). Cadmium (Cd): An Emerging Regulatory Metal with Critical Role in Cell Signalling and Plant Morphogenesis. In: Srivastava, S., Srivastava, A., Suprasanna, P. (eds) Plant-Metal Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-20732-8_4

Download citation

Publish with us

Policies and ethics