Skip to main content

An ASP-Based Framework for the Manipulation of Articulated Objects Using Dual-Arm Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11481))

Abstract

The manipulation of articulated objects is of primary importance in robotics, and is one of the most complex robotics tasks. Traditionally, this problem has been tackled by developing ad-hoc approaches, that lack of flexibility and portability.

In this paper we present a framework based on Answer Set Programming (ASP) for the automated manipulation of articulated objects in a robot architecture. In particular, ASP is employed for representing the configuration of the articulated object, for checking the consistency of the knowledge base, as well as for generating the sequence of manipulation actions. The framework is validated both in simulation and on the Baxter dual-arm manipulator, showing the applicability of the ASP methodology in this complex application scenario.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming encoding for nurse scheduling. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F.A. (eds.) (AI*IA 2017). LNCS, vol. 10640, pp. 468–482. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70169-1_35

    Chapter  Google Scholar 

  2. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer set programming to the conference paper assignment problem. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_13

    Chapter  Google Scholar 

  3. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS for reasoning in robots. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 69–82. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5_7

    Chapter  MATH  Google Scholar 

  4. Bodenhagen, L., et al.: An adaptable robot vision system performing manipulation actions with flexible objects. IEEE Trans. Autom. Sci. Eng. 11(3), 749–765 (2014)

    Article  Google Scholar 

  5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  6. Calimeri, F., et al.: ASP-Core-2 Input Language Format (2013)

    Google Scholar 

  7. Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: Automated planning techniques for robot manipulation tasks involving articulated objects. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, pp. 483–497. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70169-1_36

    Chapter  Google Scholar 

  8. Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: On the manipulation of articulated objects in human-robot cooperation scenarios. Robot. Auton. Syst. 109, 139–155 (2018)

    Article  Google Scholar 

  9. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences. Constraints 15(4), 485–515 (2010)

    Article  MathSciNet  Google Scholar 

  10. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., Schaub, T.: plasp 3: towards effective ASP planning. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 286–300. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_26

    Chapter  Google Scholar 

  11. Erdem, E., Patoglu, V.: Applications of ASP in robotics. Künstliche Intelligenz 32(2–3), 143–149 (2018)

    Article  Google Scholar 

  12. Erdem, E., Patoglu, V., Saribatur, Z.G.: Integrating hybrid diagnostic reasoning in plan execution monitoring for cognitive factories with multiple robots. In: Proceedings of ICRA, pp. 2007–2013. IEEE (2015)

    Google Scholar 

  13. Erdem, E., Patoglu, V., Saribatur, Z.G., Schüller, P., Uras, T.: Finding optimal plans for multiple teams of robots through a mediator: a logic-based approach. Theory Pract. Log. Program. 13(4–5), 831–846 (2013)

    Article  MathSciNet  Google Scholar 

  14. Gebser, M., et al.: Ricochet robots: a transverse ASP benchmark. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 348–360. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8_35

    Chapter  Google Scholar 

  15. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: Proceedings of the Technical Communications of the International Conference on Logic Programming (ICLP), pp. 2:1–2:15. Schloss Dagstuhl (2016)

    Google Scholar 

  16. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competition. J. Artif. Intell. Res. 60, 41–95 (2017)

    Article  MathSciNet  Google Scholar 

  17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the International Conference on Logic Programming (ICLP), pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  18. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006). Frontiers in Artificial Intelligence and Applications, vol. 141, pp. 377–381. IOS Press (2006)

    Google Scholar 

  19. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  20. Heyer, C.: Human-robot interaction and future industrial robotics applications. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4749–4754. IEEE (2010)

    Google Scholar 

  21. Howey, R., Long, D., Fox, M.: VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL. In: Proceedings of the IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 294–301. IEEE Computer Society (2004)

    Google Scholar 

  22. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the European Conference on Artificial Intelligence (ECAI), pp. 359–363 (1992)

    Google Scholar 

  23. Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J., Yang, F., Gori, I., Svetlik, M., Khante, P., Lifschitz, V., Aggarwal, J.K., Mooney, R.J., Stone, P.: Bwibots: a platform for bridging the gap between AI and human-robot interaction research. Int. J. Robot. Res. 36(5–7), 635–659 (2017)

    Article  Google Scholar 

  24. Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly lines. CIRP Ann. 58(2), 628–646 (2009)

    Article  Google Scholar 

  25. Lee, J., Lifschitz, V., Yang, F.: Action language BC: preliminary report. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 983–989. IJCAI/AAAI (2013)

    Google Scholar 

  26. Lifschitz, V.: Answer set programming and plan generation. Artif. Intell. J. 138(1–2), 39–54 (2002)

    Article  MathSciNet  Google Scholar 

  27. Nair, A., et al.: Combining self-supervised learning and imitation for vision-based rope manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2146–2153. IEEE (2017)

    Google Scholar 

  28. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. AMAI 25(3–4), 241–273 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Schäpers, B., Niemueller, T., Lakemeyer, G., Gebser, M., Schaub, T.: ASP-based time-bounded planning for logistics robots. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), pp. 509–517. AAAI Press (2018)

    Google Scholar 

  30. Schulman, J., Ho, J., Lee, C., Abbeel, P.: Learning from demonstrations through the use of non-rigid registration. In: Inaba, M., Corke, P. (eds.) Robotics Research. STAR, vol. 114, pp. 339–354. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28872-7_20

    Chapter  Google Scholar 

  31. Wakamatsu, H., Arai, E., Hirai, S.: Knotting/unknotting manipulation of deformable linear objects. Int. J. Robot. Res. 25(4), 371–395 (2006)

    Article  Google Scholar 

  32. Yamakawa, Y., Namiki, A., Ishikawa, M.: Dynamic high-speed knotting of a rope by a manipulator. IJARS 10, 1–12 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Maratea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertolucci, R. et al. (2019). An ASP-Based Framework for the Manipulation of Articulated Objects Using Dual-Arm Robots. In: Balduccini, M., Lierler, Y., Woltran, S. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2019. Lecture Notes in Computer Science(), vol 11481. Springer, Cham. https://doi.org/10.1007/978-3-030-20528-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20528-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20527-0

  • Online ISBN: 978-3-030-20528-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics