Skip to main content

Computational Interpretations of Classical Reasoning: From the Epsilon Calculus to Stateful Programs

  • Chapter
  • First Online:
Mathesis Universalis, Computability and Proof

Part of the book series: Synthese Library ((SYLI,volume 412))

  • 229 Accesses

Abstract

The problem of giving a computational meaning to classical reasoning lies at the heart of logic. This article surveys three famous solutions to this problem – the epsilon calculus, modified realizability and the Dialectica interpretation – and re-examines them from a modern perspective, with a particular emphasis on connections with algorithms and programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann, W. (1940). Zur widerspruchsfreiheit der zahlentheorie. Mathematische Annalen, 117, 162–194.

    Article  Google Scholar 

  • Aschieri, F. (2011a). Learning, realizability and games in classical arithmetic. Ph.D. thesis, Universita degli Studi di Torino and Queen Mary, University of London.

    Google Scholar 

  • Aschieri, F. (2011b). Transfinite update procedures for predicative systems of analysis. In Computer Science Logic (CSL’11) (Volume 12 of Leibniz international proceedings in informatics, pp. 1–15).

    Google Scholar 

  • Aschieri, F., & Berardi, S. (2010). Interactive learning-based realizability for Heyting arithmetic with EM1. Logical Methods in Computer Science, 6(3), 1–22.

    Article  Google Scholar 

  • Avigad, J. (2002). Update procedures and the 1-consistency of arithmetic. Mathematical Logic Quarterly, 48(1), 3–13.

    Article  Google Scholar 

  • Avigad, J., & Feferman, S. (1998). Gödel’s functional (“Dialectica”) interpretation. In S. R. Buss (Ed.), Handbook of proof theory (Volume 137 of studies in logic and the foundations of mathematics, pp. 337–405). Amsterdam: North Holland.

    Chapter  Google Scholar 

  • Avigad, J., & Zach, R. (2013). The epsilon calculus. In The Stanford encyclopedia of philosophy. Revised edition Nov 2013 edition. Available online at https://plato.stanford.edu/entries/epsilon-calculus/.

  • Berardi, S., Bezem, M., & Coquand, T. (1998). On the computational content of the axiom of choice. Journal of Symbolic Logic, 63(2), 600–622.

    Article  Google Scholar 

  • Berger, U. (2004). A computational interpretation of open induction. In Proceedings of LICS 2004 (pp. 326–334). IEEE Computer Society.

    Google Scholar 

  • Berger, U., Lawrence, A., Forsberg, F., & Seisenberger, M. (2015). Extracting verified decision procedures: DPLL and resolution. Logical Methods in Computer Science, 11(1:6), 1–18.

    Google Scholar 

  • Berger, U., Miyamoto, K., & Schwichtenberg, H. (2016). Logic for Gray-code computation. In D. Probst & P. Schuster (Eds.), Concepts of proof in mathematics, philosophy, and computer science. Berlin/Boston: De Gruyter.

    Google Scholar 

  • Berger, U., & Schwichtenberg, H. (1995). Program extraction from classical proofs. In D. Leivant (Ed.), Logic and Computational Complexity Workshop (LCC’94) (Volume 960 of lecture notes in computer science, pp. 77–97).

    Google Scholar 

  • Berger, U., Seisenberger, M., & Woods, G. (2014). Extracting imperative programs from proofs: In-place quicksort. In Proceedings of TYPES 2013 (Volume 26 of LIPIcs, pp. 84–106).

    Google Scholar 

  • Birolo, G. (2012). Interative realizability, monads and witness extraction. Ph.D. thesis, Universitá degli Studi di Torino.

    Google Scholar 

  • Coquand, T. (1995). A semantics of evidence for classical arithmetic. Journal of Symbolic Logic, 60, 325–337.

    Article  Google Scholar 

  • de Paiva, V. (1991). The dialectica categories. Ph.D. thesis, University of Cambridge. Published as Technical report 213, Computer Laboratory, University of Cambridge.

    Google Scholar 

  • Ferreira, G., & Oliva, P. (2012). On the relation between various negative translations. In Logic, construction, computation (Volume 3 of Ontos-Verlag mathematical logic, pp. 227–258).

    Google Scholar 

  • Giese, M., & Ahrendt, W. (1999). Hilbert’s epsilon-terms in automated theorem proving. In TABLEAUX (Volume 1617 of LNCS, pp. 171–185). Springer.

    Google Scholar 

  • Gödel, K. (1958). Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica, 12, 280–287.

    Article  Google Scholar 

  • Gödel, K. (1990). Collected works (Vol. II). New York: Oxford University Press.

    Google Scholar 

  • Kohlenbach, U. (1999). On the no-counterexample interpretation. Journal of Symbolic Logic, 64, 1491–1511.

    Article  Google Scholar 

  • Kohlenbach, U. (2008). Applied proof theory: Proof interpretations and their use in mathematics (Monographs in mathematics). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kohlenbach, U. (2018). Kreisel’s ‘shift of emphasis’ and contemporary proof mining. Chapter for forthcoming book ‘Intuitionism, Computation, and Proof: Selected themes from the research of G. Kreisel’.

    Google Scholar 

  • Kohlenbach, U., & Safarik, P. (2014). Fluctuations, effective learnability and metastability in analysis. Annals of Pure and Applied Logic, 165, 266–304.

    Article  Google Scholar 

  • Kreisel, G. (1951). On the interpretation of non-finitist proofs, Part I. Journal of Symbolic Logic, 16, 241–267.

    Google Scholar 

  • Kreisel, G. (1952). On the interpretation of non-finitist proofs, part II: Interpretation of number theory. Journal of Symbolic Logic, 17, 43–58.

    Article  Google Scholar 

  • Kreisel, G. (1959). Interpretation of analysis by means of functionals of finite type. In A. Heyting (Ed.), Constructivity in mathematics (pp. 101–128). Amsterdam: North-Holland.

    Google Scholar 

  • Krivine, J.-L. (2009). Realizability in classical logic. In Interactive models of computation and program behaviour (Volume 27 of Panoramas et synthèses, pp. 197–229). Société Mathématique de France.

    Google Scholar 

  • Minlog. (2018). http://www.mathematik.uni-muenchen.de/~logik/minlog/. Official homepage of MINLOG, as of January 2018.

  • Mints, G. (2008). Cut elimination for a simple formulation of the epsilon calculus. Annals of Pure and Applied Logic, 152(1–3), 148–169.

    Article  Google Scholar 

  • Miquel, A. (2011). Existential witness extraction in classical realizability and via a negative translation. Logical Methods in Computer Science, 7(2:2), 1–47.

    Google Scholar 

  • Moggi, E. (1991). Notions of computation and monads. Information and Computation, 93(1), 55–92.

    Article  Google Scholar 

  • Moser, G. (2006). Ackermann’s substitution method (remixed). Annals of Pure and Applied Logic, 142(1–3), 1–18.

    Article  Google Scholar 

  • Moser, G., & Zach, R. (2006). The epsilon calculus and Herbrand complexity. Studia Logica, 82(1), 133–155.

    Article  Google Scholar 

  • Novikoff, P. S. (1943). On the consistency of certain logical calculi. Matematiceskij Sbornik, 12(54), 230–260.

    Google Scholar 

  • Oliva, P. (2006). Unifying functional interpretations. Notre Dame Journal of Formal Logic, 47(2), 263–290.

    Article  Google Scholar 

  • Oliva, P., & Powell, T. (2015a). A constructive interpretation of Ramsey’s theorem via the product of selection functions. Mathematical Structures in Computer Science, 25(8), 1755–1778.

    Article  Google Scholar 

  • Oliva, P., & Powell, T. (2015b). A game-theoretic computational interpretation of proofs in classical analysis. In R. Kahle & M. Rathjen (Eds.), Gentzen’s centenary: The quest for consistency (pp. 501–532). Cham: Springer.

    Chapter  Google Scholar 

  • Oliva, P., & Powell, T. (2017). Spector bar recursion over finite partial functions. Annals of Pure and Applied Logic, 168(5), 887–921.

    Article  Google Scholar 

  • Pedrot, P.-M. (2015). A materialist dialectica. Ph.D. thesis, Université Paris Diderot.

    Google Scholar 

  • Powell, T. (2012). Applying Gödel’s Dialectica interpretation to obtain a constructive proof of Higman’s lemma. In Proceedings of classical logic and computation’12 (Volume 97 of EPTCS, pp. 49–62).

    Google Scholar 

  • Powell, T. (2013). On bar recursive interpretations of analysis. Ph.D. thesis, Queen Mary University of London.

    Google Scholar 

  • Powell, T. (2014). The equivalence of bar recursion and open recursion. Annals of Pure and Applied Logic, 165(11), 1727–1754.

    Article  Google Scholar 

  • Powell, T. (2015). Parametrised bar recursion: A unifying framework for realizability interpretations of classical dependent choice. Journal of Logic and Computation. (Advance access).

    Google Scholar 

  • Powell, T. (2016). Gödel’s functional interpretation and the concept of learning. In Proceedings of Logic in Computer Science (LICS 2016) (pp. 136–145). ACM.

    Google Scholar 

  • Powell, T. (2018a). A functional interpretation with state. In Proceedings of Logic in Computer Science (LICS 2018). ACM.

    Google Scholar 

  • Powell, T. (2018b, To appear). Well quasi-orders and the functional interpretation. In P. Schuster, M. Seisenberger, & A. Weiermann (Eds.), Well quasi-orders in computation, logic, language and reasoning (Trends in logic). Springer.

    Google Scholar 

  • Schwichtenberg, H., & Wainer, S. (2011). Proofs and computations (Perspectives in logic). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Smullyan, R. (1978). What is the name of this book? The riddle of Dracula and other logical puzzles. Englewood Cliffs/London: Prentice Hall.

    Google Scholar 

  • Spector, C. (1962). Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In F. D. E. Dekker (Ed.), Recursive function theory: Proceedings of symposia in pure mathematics (Vol. 5, pp. 1–27). Providence, Rhode Island: American Mathematical Society.

    Chapter  Google Scholar 

  • Trifonov, T. (2011). Analysis of methods for extraction of programs from non-constructive proofs. Ph.D. thesis, Ludwig-Maximilians-Universität Munich.

    Google Scholar 

  • Wadler, P. (1995). Monads for functional programming. In Advanced functional programming (Volume 925 of lecture notes in computer science).

    Google Scholar 

Download references

Acknowledgements

I am grateful to the anonymous referee, together with Ulrik Buchholtz, Felix Canavoi and Sam Sanders, whose corrections and suggestions improved this paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Powell, T. (2019). Computational Interpretations of Classical Reasoning: From the Epsilon Calculus to Stateful Programs. In: Centrone, S., Negri, S., Sarikaya, D., Schuster, P.M. (eds) Mathesis Universalis, Computability and Proof. Synthese Library, vol 412. Springer, Cham. https://doi.org/10.1007/978-3-030-20447-1_14

Download citation

Publish with us

Policies and ethics