Skip to main content

TRAIL Mediated Signaling in Breast Cancer: Awakening Guardian Angel to Induce Apoptosis and Overcome Drug Resistance

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1152))

Abstract

Sequencing technologies have allowed us to characterize highly heterogeneous molecular landscape of breast cancer with unprecedented details. Tremendous breakthroughs have been made in unraveling contributory role of signaling pathways in breast cancer development and progression. It is becoming progressively more understandable that deregulation of spatio-temporally controlled pathways underlie development of resistance against different drugs. TRAIL mediated signaling has attracted considerable appreciation because of its characteristically unique ability to target cancer cells while leaving normal cells intact. Discovery of TRAIL was considered as a paradigm shift in molecular oncology because of its conspicuous ability to selectively target cancer cells. There was an exponential growth in the number of high-quality reports which highlighted cancer targeting ability of TRAIL and scientists worked on the development of TRAIL-based therapeutics and death receptor targeting agonistic antibodies to treat cancer. However, later studies challenged simplistic view related to tumor targeting ability of TRAIL. Detailed mechanistic insights revealed that overexpression of anti-apoptotic proteins, inactivation of pro-apoptotic proteins and downregulation of death receptors were instrumental in impairing apoptosis in cancer cells. Therefore researchers started to give attention to identification of methodologies and strategies to overcome the stumbling blocks associated with TRAIL-based therapeutics. Subsequent studies gave us a clear picture of signaling cascade of TRAIL and how deregulation of different proteins abrogated apoptosis. In this chapter we have attempted to provide an overview of the TRAIL induced signaling, list of proteins frequently deregulated and modern approaches to strategically restore apoptosis in TRAIL–resistant breast cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zardavas D, Irrthum A, Swanton C, Piccart M (2015) Clinical management of breast cancer heterogeneity. Nat Rev Clin Oncol 12(7):381–394. https://doi.org/10.1038/nrclinonc.2015.73

    Article  CAS  PubMed  Google Scholar 

  2. Kwa M, Makris A, Esteva FJ (2017) Clinical utility of gene-expression signatures in early stage breast cancer. Nat Rev Clin Oncol 14(10):595–610. https://doi.org/10.1038/nrclinonc.2017.74

    Article  CAS  PubMed  Google Scholar 

  3. Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6(12):718–730. https://doi.org/10.1038/nrclinonc.2009.166

    Article  CAS  PubMed  Google Scholar 

  4. Lin SX, Chen J, Mazumdar M, Poirier D, Wang C, Azzi A, Zhou M (2010) Molecular therapy of breast cancer: progress and future directions. Nat Rev Endocrinol 6(9):485–493. https://doi.org/10.1038/nrendo.2010.92

    Article  CAS  PubMed  Google Scholar 

  5. Lee A, Djamgoz MBA (2018) Triple negative breast cancer: emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev 62:110–122. https://doi.org/10.1016/j.ctrv.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  6. Kimberley FC, Screaton GR (2004) Following a TRAIL: update on a ligand and its five receptors. Cell Res 14(5):359–372

    Article  CAS  PubMed  Google Scholar 

  7. von Karstedt S, Montinaro A, Walczak H (2017) Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 17(6):352–366. https://doi.org/10.1038/nrc.2017.28

    Article  CAS  Google Scholar 

  8. de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L (2016) Onto better TRAILs for cancer treatment. Cell Death Differ 23(5):733–747. https://doi.org/10.1038/cdd.2015.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ganten TM, Sykora J, Koschny R, Batke E, Aulmann S, Mansmann U, Stremmel W, Sinn HP, Walczak H (2009) Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer. J Mol Med (Berl) 87(10):995–1007. https://doi.org/10.1007/s00109-009-0510-z

    Article  CAS  Google Scholar 

  10. Labovsky V, Martinez LM, Davies KM, de Luján Calcagno M, García-Rivello H, Wernicke A, Feldman L, Matas A, Giorello MB, Borzone FR, Choi H, Howard SC, Chasseing NA (2017) Prognostic significance of TRAIL-R3 and CCR-2 expression in tumor epithelial cells of patients with early breast cancer. BMC Cancer 17(1):280. https://doi.org/10.1186/s12885-017-3259-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanlioglu AD, Dirice E, Aydin C, Erin N, Koksoy S, Sanlioglu S (2005) Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC Cancer 5:54

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ruiz de Almodóvar C, Ruiz-Ruiz C, Rodríguez A, Ortiz-Ferrón G, Redondo JM, López-Rivas A (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) decoy receptor TRAIL-R3 is up-regulated by p53 in breast tumor cells through a mechanism involving an intronic p53-binding site. J Biol Chem 279(6):4093–4101

    Article  PubMed  Google Scholar 

  13. Dimberg LY, Towers CG, Behbakht K, Hotz TJ, Kim J, Fosmire S, Porter CC, Tan AC, Thorburn A, Ford HL (2017) A genome-wide loss-of-function screen identifies SLC26A2 as a novel mediator of TRAIL resistance. Mol Cancer Res 15(4):382–394. https://doi.org/10.1158/1541-7786.MCR-16-0234. Epub 2017 Jan 20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Wang H, Wang LY, Cai D, Duan Z, Zhang Y, Chen P, Zou JX, Xu J, Chen X, Kung HJ, Chen HW (2016) Silencing the epigenetic silencer KDM4A for TRAIL and DR5 simultaneous induction and antitumor therapy. Cell Death Differ 23(11):1886–1896. https://doi.org/10.1038/cdd.2016.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mauro-Lizcano M, López-Rivas A (2018) Glutamine metabolism regulates FLIP expression and sensitivity to TRAIL in triple-negative breast cancer cells. Cell Death Dis 9(2):205. https://doi.org/10.1038/s41419-018-0263-0.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Strekalova E, Malin D, Good DM, Cryns VL (2015) Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL Receptor-2 expression. Clin Cancer Res 21(12):2780–2791. https://doi.org/10.1158/1078-0432.CCR-14-2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang S, Shao M, Zhong Z, Wang A, Cao J, Lu Y, Wang Y, Zhang J (2017) Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Deliv 24(1):1791–1800. https://doi.org/10.1080/10717544.2017.1406558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang S, Xu Y, Li C, Tao H, Wang A, Sun C, Zhong Z, Wu X, Li P, Wang Y (2018. pii: S0278-6915(18)30102-9) Gambogic acid sensitizes breast cancer cells to TRAIL-induced apoptosis by promoting the crosstalk of extrinsic and intrinsic apoptotic signalings. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2018.02.037

    Article  CAS  PubMed  Google Scholar 

  19. Song W, Yan CY, Zhou QQ, Zhen LL (2017) Galangin potentiates human breast cancer to apoptosis induced by TRAIL through activating AMPK. Biomed Pharmacother 89:845–856. https://doi.org/10.1016/j.biopha.2017.01.062

    Article  CAS  PubMed  Google Scholar 

  20. Sant DW, Mustafi S, Gustafson CB, Chen J, Slingerland JM, Wang G (2018) Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression. Sci Rep 8(1):5306. https://doi.org/10.1038/s41598-018-23714-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Piggott L, da Silva AM, Robinson T, Santiago-Gómez A, Simões BM, Becker M, Fichtner I, Andera L, Piva M, Vivanco MD, Morris C, Alchami FS, Young P, Barrett-Lee PJ, Clarke RB, Gee JM, Clarkson R (2018. pii: clincanres.1381.2017) Acquired resistance of ER- positive breast cancer to endocrine treatment confers an adaptive sensitivity to TRAIL through post-translational downregulation of c-FLIP. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-1381

    Article  CAS  PubMed  Google Scholar 

  22. Jablonowski LJ, Conover D, Teraphongphom NT, Wheatley MA (2018) Manipulating multifaceted microbubble shell composition to target both TRAIL-sensitive and resistant cells. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.36389

    Article  CAS  PubMed  Google Scholar 

  23. Dufour F, Rattier T, Constantinescu AA, Zischler L, Morlé A, Ben Mabrouk H, Humblin E, Jacquemin G, Szegezdi E, Delacote F, Marrakchi N, Guichard G, Pellat-Deceunynck C, Vacher P, Legembre P, Garrido C, Micheau O (2017) TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget 8(6):9974–9985. https://doi.org/10.18632/oncotarget.14285

    Article  PubMed  Google Scholar 

  24. Shlyakhtina Y, Pavet V, Gronemeyer H (2017) Dual role of DR5 in death and survival signaling leads to TRAIL resistance in cancer cells. Cell Death Dis 8(8):e3025. https://doi.org/10.1038/cddis.2017.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fritsche H, Heilmann T, Tower RJ, Hauser C, von Au A, El-Sheikh D, Campbell GM, Alp G, Schewe D, Hübner S, Tiwari S, Kownatzki D, Boretius S, Adam D, Jonat W, Becker T, Glüer CC, Zöller M, Kalthoff H, Schem C, Trauzold A (2015) TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model. Oncotarget 6(11):9502–9516

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang D, Liu D, Gao J, Liu M, Liu S, Jiang M, Liu Y, Zheng D (2013) TRAIL-induced miR-146a expression suppresses CXCR4-mediated human breast cancer migration. FEBS J 280(14):3340–3353. https://doi.org/10.1111/febs.12323

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammad Ahmad Farooqi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, N., Yi, L., Khalid, S., Ozbey, U., Sabitaliyevich, U.Y., Farooqi, A.A. (2019). TRAIL Mediated Signaling in Breast Cancer: Awakening Guardian Angel to Induce Apoptosis and Overcome Drug Resistance. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-20301-6_12

Download citation

Publish with us

Policies and ethics