Skip to main content

MXenes for Batteries

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)
  • 5845 Accesses

Abstract

Development of advanced electrochemical energy storage devices is crucial to foster a sustainable power grid. At present, lithium-ion batteries do not have satisfactory performance for large-scale applications, and one of major challenges is to find electrode materials with better specific capacity, operating potential, rate capability, and cycle stability. MXenes have attracted attention as the potential electrode materials of various batteries such as lithium-ion, sodium-ion, potassium-ion, or magnesium-ion batteries. In this chapter, after describing the electrochemical properties of MXenes, we will summarize recent progress in their applications to batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Noorden, R. A. (2014). A better battery. Nature, 507, 26–28.

    Article  Google Scholar 

  2. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.

    Article  CAS  Google Scholar 

  3. Choi, J. W., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1, 16013.

    Article  CAS  Google Scholar 

  4. Okubo, M., Sugahara, A., Kajiyama, S., & Yamada, A. (2018). MXene as a charge storage host. Accounts of Chemical Research, 51, 591–599.

    Article  CAS  Google Scholar 

  5. Shpigel, N., Levi, M. D., Sigalov, S., Mathis, T. S., Gogotsi, Y., & Aurbach, D. (2018). Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. Journal of the American Chemical Society, 140, 8910. https://doi.org/10.1021/jacs.8b04862.

    Article  CAS  Google Scholar 

  6. Feng, G., Qiao, R., Huang, J., Sumpter, B. G., & Meunier, V. (2010). Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance. ACS Nano, 4, 2382–2390.

    Article  CAS  Google Scholar 

  7. Kajiyama, S., Szabova, L., Sodeyama, K., Iinuma, H., Morita, R., Gotoh, K., Tateyama, Y., Okubo, M., & Yamada, A. (2016). Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano, 10, 3334–3341.

    Article  CAS  Google Scholar 

  8. Wang, X., Shen, X., Gao, Y., Wang, Z., Yu, R., & Chen, L. (2015). Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. Journal of the American Chemical Society, 137, 2715–2721.

    Article  CAS  Google Scholar 

  9. Naguib, M., Come, J., Dyatkin, B., Presser, V., Taberna, P. L., Simon, P., Barsoum, M. W., & Gogotsi, Y. (2012). MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 16, 61–64.

    Article  CAS  Google Scholar 

  10. Naguib, M., Halim, J., Lu, J., Cook, K. M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2013). New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. Journal of the American Chemical Society, 135, 15966–15969.

    Article  CAS  Google Scholar 

  11. Kajiyama, S., Szabova, L., Iinuma, H., Sugahara, A., Gotoh, K., Sodeyama, K., Tateyama, Y., Okubo, M., & Yamada, A. (2017). Enhanced Li-Ion accessibility in MXene titanium carbide by steric chloride termination. Advanced Energy Materials, 7, 1601873.

    Article  Google Scholar 

  12. Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., & Gogotsi, Y. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.

    Article  Google Scholar 

  13. Sun, D., Wang, M., Li, Z., Fan, G., Fan, L. Z., & Zhou, A. (2014). Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochemistry Communications, 47, 80–83.

    Article  Google Scholar 

  14. Liu, Y., Wang, W., Ying, Y., Wang, Y., & Peng, X. (2015). Binder-free layered Ti3C2/CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries. Dalton Transactions, 44, 7123–7126.

    Article  CAS  Google Scholar 

  15. Ren, C. E., Zhao, M. Q., Makaryan, T., Halim, J., Boota, M., Kota, S., Anasori, B., Barsoum, M. W., & Gogotsi, Y. (2016). Porous two-dimensional transition Metal Carbide (MXene) flakes for high-performance Li-Ion storage. ChemElectroChem, 3, 689–693.

    Article  CAS  Google Scholar 

  16. Luo, J., Tao, X., Zhang, J., Xia, Y., Huang, H., Zhang, L., Gan, Y., Liang, C., & Zhang, W. (2016). Sn4+ Ion decorated highly conductive Ti3C2 MXene: Promising Lithium-Ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 10, 2491–2499.

    Article  CAS  Google Scholar 

  17. Luo, J., Zhang, W., Yuan, H., Jin, C., Zhang, L., Huang, H., Liang, C., Xia, Y., Zhang, J., Gan, Y., & Tao, X. (2017). Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano, 11, 2459–2469.

    Article  CAS  Google Scholar 

  18. Mashtalir, O., Lukatskaya, M. R., Zhao, M. Q., Barsoum, M. W., & Gogotsi, Y. (2015). Amine-assisted delamination of Nb2C MXene for Li-Ion energy storage devices. Advanced Materials, 27, 3501–3506.

    Article  CAS  Google Scholar 

  19. Liu, F., Zhou, J., Wang, S., Wang, B., Shen, C., Wang, L., Hu, Q., Huang, Q., & Zhou, A. (2017). Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. Journal of the Electrochemical Society, 164, A709–A713.

    Article  CAS  Google Scholar 

  20. Halim, J., Kota, S., Lukatskaya, M. R., Naguib, M., Zhao, M. Q., Moon, E. J., Pitock, J., Nanda, J., May, S. J., Gogotsi, Y., & Barsoum, M. W. (2016). Synthesis and characterization of 2D Molybdenum Carbide (MXene). Advanced Functional Materials, 26, 3118–3127.

    Article  CAS  Google Scholar 

  21. Wang, C., Xie, H., Chen, S., Ge, B., Liu, D., Wu, C., Xu, W., Chu, W., Babu, G., Ajayan, P. M., & Song, L. (2018). Atomic cobalt covalently engineered interlayers for superior Lithium-Ion storage. Advanced Materials, 30, 1802525.

    Article  Google Scholar 

  22. Xie, Y., Dall’Agnese, Y., Naguib, M., Gogotsi, Y., Barsoum, M. W., Zhuang, H. L., & Kent, P. R. C. (2014). Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 8, 9606–9615.

    Article  CAS  Google Scholar 

  23. Wang, X., Kajiyama, S., Iinuma, H., Hosono, E., Oro, S., Moriguchi, I., Okubo, M., & Yamada, A. (2015). Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications, 6, 6544.

    Article  CAS  Google Scholar 

  24. Lian, P., Dong, Y., Wu, Z. S., Zheng, S., Wang, X., Wang, S., Sun, C., Qin, J., Shi, X., & Bao, X. (2017). Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 40, 1–8.

    Article  CAS  Google Scholar 

  25. Xie, X., Zhao, M. Q., Anasori, B., Maleski, K., Ren, C. E., Li, J., Byles, B. W., Pomerantseva, E., Wang, G., & Gogotsi, Y. (2016). Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 26, 513–523.

    Article  CAS  Google Scholar 

  26. Wu, Y., Nie, P., Wang, J., Dou, H., & Zhang, X. (2017). Few-layer MXenes delaminated via high-energy mechanical milling for enhanced Sodium-Ion batteries performance. ACS Applied Materials & Interfaces, 9, 39610–39617.

    Article  CAS  Google Scholar 

  27. Zhao, M. Q., Xie, X., Ren, C. E., Makaryan, T., Anasori, B., Wang, G., & Gogotsi, Y. (2017). Hollow MXene spheres and 3D macroporous MXene frameworks for Na‐Ion storage. Advanced Materials, 29, 1702410.

    Article  Google Scholar 

  28. Guo, X., Xie, X., Choi, S., Zhao, Y., Liu, H., Wang, C., Chang, S., & Wang, G. (2017). Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. Journal of Materials Chemistry A, 5, 12445–12452.

    Article  CAS  Google Scholar 

  29. Dall’Agnese, Y., Taberna, P. L., Gogotsi, Y., & Simon, P. (2015). Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. Journal of Physical Chemistry Letters, 6, 2305–2309.

    Article  Google Scholar 

  30. Zhou, J., Zha, X., Zhou, X., Chen, F., Gao, G., Wang, S., Shen, C., Chen, T., Zhi, C., Eklund, P., Du, S., Xue, J., Shi, W., Chai, Z., & Huang, Q. (2017). Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano, 11, 3841–3850.

    Article  CAS  Google Scholar 

  31. Naguib, M., Adams, R. A., Zhao, Y., Zemlyanov, D., Varma, A., Nanda, J., & Pol, V. G. (2017). Electrochemical performance of MXenes as K-ion battery anodes. Chemical Communications, 53, 6883–6886.

    Article  CAS  Google Scholar 

  32. VahidMohammadi, A., Hdjikhani, A., Shahbazmohamadi, S., & Beidaghi, M. (2017). Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano, 11, 11135–11144.

    Article  CAS  Google Scholar 

  33. Xu, M., Lei, S., Qi, J., Dou, Q., Liu, L., Lu, Y., Huang, Q., Shi, S., & Yan, X. (2018). Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant. ACS Nano, 12, 3733–3740.

    Article  CAS  Google Scholar 

  34. Kong, F., He, X., Liu, Q., Qi, X., Zheng, Y., & Wang, R. (2018). Improving the electrochemical properties of MXene Ti3C2 multilayer for Li-ion batteries by vacuum calcination. Electrochimica Acta, 265, 140–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okubo, M., Yamada, A. (2019). MXenes for Batteries. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_19

Download citation

Publish with us

Policies and ethics