Skip to main content

Minimally Invasive Surgery for Spinal Tumors

  • Chapter
  • First Online:
  • 1017 Accesses

Abstract

Spinal tumors comprise a diverse set of pathologies, including tumors of the spinal cord, its meninges, and tumors of the bony spinal column. Tumors in each location can be divided into benign and malignant primary lesions, which most commonly arise from the cord and meninges, and metastases, which more commonly localize to the bony elements. Traditionally both spinal cord tumors and lesions of the vertebral column have been treated surgically, despite the often high morbidity associated with such procedures. In the past two decades though, more minimally invasive techniques have been developed for the treatment of spinal tumors, which decrease intraoperative morbidity, shorten postoperative recovery, and accelerate the return to systemic treatment. The goal of this chapter is to give a brief overview of spinal oncology, along with a description of the minimally invasive surgical techniques that have been developed to address these pathologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sohn S, Kim J, Chung CK, Lee NR, Park E, Chang U, et al. A nationwide epidemiological study of newly diagnosed spine metastasis in the adult Korean population. Spine J. 2016;16(8):937–45.

    Article  PubMed  Google Scholar 

  2. Sohn S, Kim J, Chung CK, Lee NR, Sohn MJ, Kim SH. A nation-wide epidemiological study of newly diagnosed primary spine tumors in the adult korean population, 2009–2011. J Korean Neurosurg Soc. 2017;60(2):195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sohn S, Kim J, Chung CK, Lee N, Park E, Chang U, et al. Nationwide epidemiology and healthcare utilization of spine tumor patients in the adult Korean population, 2009–2012. Neurooncol Pract. 2015;2(2):93–100.

    PubMed  PubMed Central  Google Scholar 

  4. Pinter NK, Pfiffner TJ, Mechtler LL. Neuroimaging of spine tumors. Handb Clin Neurol. 2016;136:689–706.

    Article  PubMed  Google Scholar 

  5. Togawa D, Lewandrowski K. The pathophysiology of spinal metastases. In: RF ML, Lew RK, Markman M, Bukowski RM, Macklis R, et al., editors. Cancer in the spine: comprehensive care Totowa. New Jersey: Humana Press; 2006. p. 17–23.

    Chapter  Google Scholar 

  6. Liang T, Wan Y, Zou X, Peng X, Liu S. Is surgery for spine metastasis reasonable in patients older than 60 years? Clin Orthop Relat Res. 2013;471(2):628–39.

    Article  PubMed  Google Scholar 

  7. Tokuhashi Y, Matsuzaki H, Toriyama S, Kawano H, Ohsaka S. Scoring system for the preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976). 1990;15(11):1110–3.

    Article  CAS  Google Scholar 

  8. Arguello F, Baggs RB, Duerst RE, Johnstone L, McQueen K, Frantz CN. Pathogenesis of vertebral metastasis and epidural spinal cord compression. Cancer. 1990;65(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  9. Fornasier VL, Horne JG. Metastases to the vertebral column. Cancer. 1975;36(2):590–4.

    Article  CAS  PubMed  Google Scholar 

  10. Gezercan Y, Çavuş G, Ökten AI, Menekşe G, Çıkılı M, Adamhasan F, et al. Single-stage posterolateral transpedicular approach with 360-degree stabilization and vertebrectomy in primary and metastatic tumors of the spine. World Neurosurg. 2016;95:221.

    Article  Google Scholar 

  11. Klimo P Jr, Thompson CJ, Kestle JRW, Schmidt MH. A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro-Oncology. 2005;7(1):64–76.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Molina CA, Gokaslan ZL, Sciubba DM. A systematic review of the current role of minimally invasive spine surgery in the maangement of metastatic spine disease. Int J Surg Oncol. 2011;2011:598148.

    PubMed  PubMed Central  Google Scholar 

  13. Wiggins GC, Mirza SK, Bellabarba C, West A, Chapman JR, Shaffrey CI. Perioperative complications with costotransversectomy and anterior approaches to thoracic and thoracolumbar tumors. Neurosurg Focus. 2001;11(6):1–9.

    Article  Google Scholar 

  14. Gokaslan ZL, York JE, Walsh G, McCutcheon IE, Lang FF, Putnam JB Jr, et al. Transthoracic vertebrectomy for metastatic spinal tumors. J Neurosurg. 1998;89(4):599–609.

    Article  CAS  PubMed  Google Scholar 

  15. Holman PJ, Suki D, McCutcheon IE, Wolinsky J, Rhines LD, Gokaslan ZL. Surgical management of metastatic disease of the lumbar spine: experience with 139 patients. J Neurosurg Spine. 2005;2(5):550–63.

    Article  PubMed  Google Scholar 

  16. Phanphaisarn A, Patumanond J, Settakorn J, Chaiyawat P, Klangjorhor J, Pruksakorn D. Prevalence and survival patterns of patients with bone metastasis from common cancers in Thailand. Asian Pac J Cancer Prev. 2016;17(9):4335–40.

    PubMed  Google Scholar 

  17. Pointillart V, Vital J, Salmi R, Diallo A, Quan GMY. Survival prognostic factors and clinical outcomes in patients with spinal metastases. J Cancer Res Clin Oncol. 2011;137(5):849–56.

    Article  PubMed  Google Scholar 

  18. Quan GMY, Vital J, Aurouer N, Obeid I, Palussière J, Diallo A, et al. Surgery improves pain, function and quality of life in patients with spinal metastases: a prospective study on 118 patients. Eur Spine J. 2011;20(11):1970–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quraishi NA, Manoharan SR, Arealis G, Khurana A, Elsayed S, Edwards KL, et al. Accuracy of the revised Tokuhashi score in predicting survival in patients with metastatic spinal cord compression (MSCC). Eur Spine J. 2013;22(Suppl 1):21–6.

    Article  PubMed Central  Google Scholar 

  20. Schaberg J, Gainor BJ. A profile of metastatic carcinoma of the spine. Spine (Phila Pa 1976). 1985;10(1):19–20.

    Article  CAS  Google Scholar 

  21. Schoenfeld AJ, Leonard DA, Saadat E, Bono CM, Harris MB, Ferrone ML. Predictors of 30- and 90-day survival following surgical intervention for spinal metastases: a prognostic study conducted at four academic centers. Spine (Phila Pa 1976). 2016;21(8):E509.

    Google Scholar 

  22. Sioutos PJ, Arbit E, Meshulam CF, Galicich JH. Spinal metastases from solid tumors. Analysis of factors affecting survival. Cancer. 1995;76(8):1453–9.

    Article  CAS  PubMed  Google Scholar 

  23. Tokuhashi Y, Ajiro Y, Umezawa N. Outcome of treatment for spinal metastases using scoring system for preoperative evaluation of prognosis. Spine (Phila Pa 1976). 2009;34(1):69–73.

    Article  Google Scholar 

  24. Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru T. Surgical strategy for spinal metastases. Spine (Phila Pa 1976). 2001;26(3):298–306.

    Article  CAS  Google Scholar 

  25. Yang SB, Cho W, Chang U. Analysis of prognostic factors relating to postoperative survival in spinal metastases. J Korean Neurosurg Soc. 2012;51(3):127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weigel B, Maghsudi M, Neumann C, Kretschmer R, Muller FJ, Nerlich M. Surgical management of symptomatic spinal metastases. Postoperative outcome and quality of life. Spine (Phila Pa 1976). 1999;24(21):2240–6.

    Article  CAS  Google Scholar 

  27. American Cancer Society. Cancer facts & figures 2017. Atlanta: American Cancer Society; 2017.

    Google Scholar 

  28. Cole JS, Patchell RA. Metastatic epidural spinal cord compression. Lancet Neurol. 2008;7(5):459–66.

    Article  PubMed  Google Scholar 

  29. Fürstenberg CH, Wiedenhöfer B, Gerner HJ, Putz C. The effect of early surgical treatment on recovery in patients with metastatic compression of the spinal cord. J Bone Joint Surg Br. 2009;91B(2):240–4.

    Article  Google Scholar 

  30. Kaloostian PE, Yurter A, Zadnik PL, Sciubba DM, Gokaslan ZL. Current paradigms for metastatic spinal disease: an evidence-based review. Ann Surg Oncol. 2014;21(1):248–62.

    Article  CAS  PubMed  Google Scholar 

  31. Loblaw DA, Laperriere NJ, Mackillop WJ. A population-based study of malignant spinal cord compression in Ontario. Clin Oncol (R Coll Oncol). 2003;15(4):211–7.

    Article  CAS  Google Scholar 

  32. Loblaw DA, Perry J, Chambers A, Laperriere NJ. Systematic review of the diagnosis and management of malignant extradural spinal cord compression: the cancer care ontario practice guidelines initiative‘s neuro-oncology disease site group. J Clin Oncol. 2005;23(9):2028–37.

    Article  PubMed  Google Scholar 

  33. Mak KS, Lee LK, Mak RH, Wang S, Pile-Spellman J, Abrahm JL, et al. Incidence and treatment patterns in hospitalizations for malignant spinal cord compression in the United States, 1998–2006. Int J Radiat Oncol Biol Phys. 2011;80(3):824–31.

    Article  PubMed  Google Scholar 

  34. Miscusi M, Polli FM, Forcato S, Ricciardi L, Frati A, Cimatti M, et al. Comparison of minimally invasive surgery with standard open surgery for vertebral thoracic metastases causing acute myelopathy in patients with short- or mid-term life expectancy: surgical technique and early clinical results. J Neurosurg Spine. 2015;22(5):518–25.

    Article  PubMed  Google Scholar 

  35. Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8.

    Article  PubMed  Google Scholar 

  36. Quraishi NA, Gokaslan ZL, Boriani S. The surgical management of metastatic epidural compression of the spinal cord. J Bone Joint Surg Br. 2010;92(8):1054–60.

    Article  CAS  PubMed  Google Scholar 

  37. Tomycz ND, Gerszten PC. Minimally invasive treatments for metastatic spine tumors: vertebroplasty, kyphoplasty, and radiosurgery. Neurosurg Q. 2008;18(2):104–8.

    Article  Google Scholar 

  38. Witham TF, Khavkin YA, Gallia GL, Wolinsky J, Gokaslan ZL. Surgery insight: current management of epidural spinal cord compression from metastatic spine disease. Nat Clin Pract Neurol. 2006;2(2):87–94.

    Article  PubMed  Google Scholar 

  39. Chi JH, Bydon A, Hsieh P, Witham TF, Wolinsky J, Gokaslan ZL. Epidemiology and demographics for primary vertebral tumors. Neurosurg Clin N Am. 2008;19(1):1–4.

    Article  PubMed  Google Scholar 

  40. Goodwin CR, Khattab MH, Sankey EW, Elder BD, Kosztowski TA, Sarabia-Estrada R, et al. Factors associated with life expectancy in patients with metastatic spine disease from adenocarcinoma of the lung. Global Spine J. 2015;5(5):417–24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kan P, Schmidt MH. Minimally invasive thoracoscopic approach for anterior decompression and stabilization of metastatic spine disease. Neurosurg Focus. 2008;25(2):E8.

    Article  PubMed  Google Scholar 

  42. Patil CG, Lad SP, Santarelli J, Boakye M. National inpatient complications and outcomes after surgery for spinal metastasis from 1993–2002. Cancer. 2007;110(3):625–30.

    Article  PubMed  Google Scholar 

  43. Ravindra VM, Brock A, Awad A, Kalra R, Schmidt MH. The role of the mini-open thoracoscopic-assisted approach in the management of metastatic spine disease at the thoracolumbar junction. Neurosurg Focus. 2016;41(2):E16.

    Article  PubMed  Google Scholar 

  44. Ryken TC, Eichholz KM, Gerszten PC, Welch WC, Gokaslan ZL, Resnick DK. Evidence-based review of the surgical management of vertebral column metastatic disease. Neurosurg Focus. 2003;15(5):1–10.

    Article  Google Scholar 

  45. Lee SE, Jahng TA, Kim HJ. Different surgical approaches for spinal schwannoma: a single surgeon’s experience with 49 consecutive cases. World Neurosurg. 2015;84(6):1894–902.

    Article  PubMed  Google Scholar 

  46. Fehlings MG, Nater A, Zamorano JJ, Tetreault LA, Varga PP, Gokaslan ZL, et al. Risk factors for recurrence of surgically treated conventional spinal schwannomas: analysis of 169 patients from a multicenter international database. Spine (Phila Pa 1976). 2016;41(5):390–8.

    Article  Google Scholar 

  47. Safaee M, Parsa AT, Barbaro NM, Chou D, Mummaneni PV, Weinstein PR, et al. Association of tumor location, extent of resection, and neurofibromatosis status with clinical outcomes for 221 spinal nerve sheath tumors. Neurosurg Focus. 2015;39(2):E5.

    Article  PubMed  Google Scholar 

  48. Schick U, Marquardt G, Lorenz R. Recurrence of benign spinal neoplasms. Neurosurg Rev. 2001;24(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  49. Slin’ko EI, Al-Qashqish II. Intradural ventral and ventrolateral tumors of the spinal cord: surgical treatment and results. Neurosurg Focus. 2004;17(1):ECP2.

    PubMed  Google Scholar 

  50. Chamberlain MC, Tredway TL. Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep. 2011;11(3):320–8.

    Article  PubMed  Google Scholar 

  51. Connolly ES Jr, Winfree CJ, McCormick PC, Cruz M, Stein BM. Intramedullary spinal cord metastasis: report of three cases and review of the literature. World Neurosurg. 1996;46(4):329–37.

    Google Scholar 

  52. Kalayci M, Cagavi F, Gul S, Yenidunya S, Acikgoz B. Intramedullary spinal cord metastases: diagnosis and treatment—an illustrated review. Acta Neurochir. 2004;146(12):54; discussion 1354

    Article  Google Scholar 

  53. Schiff D, O’Neill BP. Intramedullary spinal cord metastases. Clinical features and treatment outcome. Neurology. 1996;47(4):906–12.

    Article  CAS  PubMed  Google Scholar 

  54. Sung WS, Sung MJ, Chan JH, Manion B, Song J, Dubey A, et al. Intramedullary spinal cord metastases: a 20-year institutional experience with a comprehensive literature review. World Neurosurg. 2013;79(3–4):576–84.

    Article  PubMed  Google Scholar 

  55. Tsai TH, Lin IC, Lin PC, Wu CH, Lin CL, Su YF. Intramedullary spinal cord metastasis from colon cancer: analysis of 19 reported cases. Spinal Cord Ser Cases. 2016;2:15026.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Waki F, Ando M, Takashima A, Yonemori K, Nokihara H, Miyake M, et al. Prognostic factors and clinical outcomes in patients with leptomeningeal metastasis from solid tumors. J Neuro-Oncol. 2009;93(2):205–12.

    Article  Google Scholar 

  57. Hosalkar HS, Jones KJ, King JJ, Lackman RD. Serial arterial embolization for large sacral giant-cell tumors: mid- to long-term results. Spine (Phila Pa 1976). 2007;32(10):1107–15.

    Article  Google Scholar 

  58. Leggon RE, Zlotecki R, Reith J, Scarborough MT. Giant cell tumor of the pelvis and sacrum. Clin Orthop Relat Res. 2004;423:196–207.

    Article  Google Scholar 

  59. Luksanapruksa P, Buchowski JM, Singhatanadgige W, Bumpass DB. Systematic review and meta-analysis of en bloc vertebrectomy compared with intralesional resection for giant cell tumors of the mobile spine. Global Spine J. 2016;6(8):798–803.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Martin C, McCarthy EF. Giant cell tumor of the sacrum and spine: series of 23 cases and a review of the literature. Iowa Orthop J. 2010;30:69–75.

    PubMed  PubMed Central  Google Scholar 

  61. Fisher CG, Saravanja DD, Dvorak MF, Rampersaud YR, Clarkson PW, Hurlbert RJ, et al. Surgical management of primary bone tumors of the spine: validation of an approach to enhance cure and reduce local recurrence. Spine (Phila Pa 1976). 2011;36(10):830–6.

    Article  Google Scholar 

  62. Quraishi NA, Boriani S, Sabou S, Varga PP, Luzzati A, Gokaslan ZL, et al. A multicenter cohort study of spinal osteoid osteomas: results of surgical treatment and analysis of local recurrence. Spine J. 2016;17(3):401–8.

    Article  PubMed  Google Scholar 

  63. Ropper AE, Cahill KS, Hanna JW, McCarthy EF, Gokaslan ZL, Chi JH. Primary vertebral tumors: a review of epidemiologic, histological, and imaging findings, part I: benign tumors. Neurosurgery. 2011;69(6):1171–80.

    Article  PubMed  Google Scholar 

  64. Bhojraj SY, Nene A, Mohite S, Varma R. Giant cell tumor fo the spine: a review of 9 surgical interventions in 6 cases. Indian J Orthop. 2007;41(2):146–50.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Boriani S, Bandiera S, Casadei R, Boriani L, Donthineni R, Gasbarrini A, et al. Giant cell tumor of the mobile spine: a review of 49 cases. Spine (Phila Pa 1976). 2012;37(1):E45.

    Article  Google Scholar 

  66. Campanacci M, Baldini N, Boriani S, Sudanese A. Giant-cell tumor of bone. J Bone Joint Surg Am. 1987;69(1):106–14.

    Article  CAS  PubMed  Google Scholar 

  67. Harrop JS, Schmidt MH, Boriani S, Shaffrey CI. Aggressive “benign” primary spine neoplasms: osteoblastoma, aneurysmal bone cyst, and giant cell tumor. Spine (Phila Pa 1976). 2009;34(22S):S47.

    Google Scholar 

  68. Junming M, Cheng Y, Dong C, Jianru X, Xinghai Y, Quan H, et al. Giant cell tumor of the cervical spine: a series of 22 cases and outcomes. Spine (Phila Pa 1976). 2008;33(3):280–8.

    Article  Google Scholar 

  69. Ma Y, Xu W, Yin H, Huang Q, Liu T, Yang X, et al. Therapeutic radiotherapy for giant cell tumor of the spine: a systemic review. Eur Spine J. 2015;24(8):1754–60.

    Article  PubMed  Google Scholar 

  70. Sanjay BKS, Frassica FJ, Frassica DA, Unni KK, McLeod RA, Sim FH. Treatment of giant-cell tumor of the pelvis. J Bone Joint Surg Am. 1993;75(10):1466–75.

    Article  CAS  PubMed  Google Scholar 

  71. Xu W, Li X, Huang W, Wang Y, Han S, Chen S, et al. Factors affecting prognosis of patients with giant cell tumors of the mobile spine: retrospective analysis of 102 patients in a single center. Ann Surg Oncol. 2013;20(3):804–10.

    Article  PubMed  Google Scholar 

  72. Yang S, Chen L, Fu T, Lai P, Niu C, Chen W. Surgical treatment for giant cell tumor of the thoracolumbar spine. Chang Gung Med J. 2006;29(1):71–8.

    PubMed  Google Scholar 

  73. Ozturk AK, Gokaslan ZL, Wolinsky J. Surgical treatment of sarcomas of the spine. Curr Treat Options in Oncol. 2014;15(3):482–92.

    Article  Google Scholar 

  74. Wan W, Lou Y, Hu Z, Wang T, Li J, Tang Y, et al. Factors affecting survival outcomes of patients with non-metastatic Ewing’s sarcoma family tumors in the spine: a retrospective analysis of 63 patients in a single center. J Neuro-Oncol. 2017;131(2):313–20.

    Article  Google Scholar 

  75. Ravindra VM, Eli IM, Schmidt MH, Brockmeyer DL. Primary osseous tumors of the pediatric spinal column: review of pathology and surgical decision making. Neurosurg Focus. 2016;41(2):E3.

    Article  PubMed  Google Scholar 

  76. Sciubba DM, Okuno S, Dekutoski MB, Gokaslan ZL. Ewing and osteogenic sarcoma: evidence for multidisciplinary management. Spine (Phila Pa 1976). 2009;34(22 Suppl):58.

    Article  Google Scholar 

  77. McLoughlin GS, Sciubba DM, Wolinsky J. Chondroma/chondrosarcoma of the spine. Neurosurg Clin N Am. 2008;19(1):57–63.

    Article  PubMed  Google Scholar 

  78. Mukherjee D, Chaichana KL, Adogwa O, Gokaslan ZL, Aaronson O, Cheng JS, et al. Association of extent of local tumor invasion and survival in patients with malignant primary osseous spinal neoplasms from the surveillance, epidemiology, and end results (SEER) database. World Neurosurg. 2011;76(6):580–5.

    Article  PubMed  Google Scholar 

  79. Orguc S, Arkun R. Primary tumors of the spine. Semin Musculoskelet Radiol. 2014;18(3):280–99.

    Article  PubMed  Google Scholar 

  80. Stacchiotti S, Sommer J. Building a global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol. 2015;16(2):e83.

    Article  Google Scholar 

  81. Loblaw DA, Laperriere NJ. Emergency treatment of malignant extradural spinal cord compression: an evidence-based guideline. J Clin Oncol. 1998;16(4):1613–24.

    Article  CAS  PubMed  Google Scholar 

  82. Rosenthal DI, Marquardt G, Lorenz R, Nichtweiß M. Anterior decompression and stabilization using a microsurgical endoscopic technique for metastatic tumors of the thoracic spine. J Neurosurg. 1996;84(4):565–72.

    Article  CAS  PubMed  Google Scholar 

  83. Findlay GF. Adverse effects of the management of malignant spinal cord compression. J Neurol Neurosurg Psychiatry. 1984;47(8):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Niazi TN, Sauri-Barraza J, Schmidt MH. Minimally invasive treatment of spinal tumors. Semin Spine Surg. 2011;23(1):51–9.

    Article  Google Scholar 

  85. Hirabayashi H, Ebara S, Kinoshita T, Yuzawa Y, Nakamura I, Takahashi J, et al. Clinical outcome and survival after palliative surgery for spinal metastases: palliative surgery in spinal metastases. Cancer. 2003;97(2):476–84.

    Article  PubMed  Google Scholar 

  86. Smith ZA, Yang I, Gorgulho A, Raphael D, De S, Antonio AF, Khoo LT. Emerging techniques in the minimally invasive treatment and management of thoracic spine tumors. J Neuro-Oncol. 2012;107(3):443–55.

    Article  Google Scholar 

  87. Barzilai O, Laufer I, Yamada Y, Higginson DS, Schmitt AM, Lis E, et al. Integrating evidence-based medicine for treatment of spinal metastases into a decision framework: neurologic, oncologic, mechanicals stability, and systemic disease. J Clin Oncol. 2017;35(21):2419–27.

    Article  CAS  PubMed  Google Scholar 

  88. Laufer I, Iorgulescu JB, Chapman T, Lis E, Shi W, Zhang Z, et al. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18(3):207–14.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Massicotte EM, Foote M, Reddy R, Sahgal A. Minimal access spine surgery (MASS) for decompression and stabilization performed as an out-patient procedure for metastatic spinal tumours followed by spine stereotactic body radiotherapy (SBRT): first report of technique and preliminary outcomes. Technol Cancer Res Treat. 2012;11(1):15–25.

    Article  PubMed  Google Scholar 

  90. Moulding HD, Elder JB, Lis E, Lovelock DM, Zhang Z, Yamada Y, et al. Local disease control after decompressive surgery and adjuvant high-dose single-fraction radiosurgery for spine metastases clinical article. J Neurosurg Spine. 2010;13(1):87–93.

    Article  PubMed  Google Scholar 

  91. Iacoangeli M, Gladi M, Di Rienzo A, Dobran M, Alvaro L, Nocchi N, et al. Minimally invasive surgery for benign intradural extramedullary spinal meningiomas: experience of a single institution in a cohort of elderly patients and review of the literature. Clin Interv Aging. 2012;7:556–64.

    Google Scholar 

  92. Klekamp J. Spinal ependymomas. Part 1: intramedullary ependymomas. Neurosurg Focus. 2015;39(2):E6.

    Article  PubMed  Google Scholar 

  93. Samartzis DD, Gillis CC, Shih P, O’Toole JE, Fessler RG. Intramedullary spinal cord tumors: part II—management options and outcomes. Global Spine J. 2016;6(2):176–85.

    Article  PubMed  Google Scholar 

  94. Cooper PR. Outcome after operative treatment of intramedullary spinal cord tumors in adults: intermediate and long-term results in 51 patients. Neurosurgery. 1989;25(6):855–9.

    Article  CAS  PubMed  Google Scholar 

  95. Jallo GI, Danish S, Velasquez L, Epstein F. Intramedullary low-grade astrocytomas: long-term outcome following radical surgery. J Neuro-Oncol. 2001;53(1):61–6.

    Article  CAS  Google Scholar 

  96. Klekamp J. Treatment of intramedullary tumors: analysis of surgical morbidity and long-term results. J Neurosurg Spine. 2013;19(1):12–26.

    Article  PubMed  Google Scholar 

  97. McGirt MJ, Goldstein IM, Chaichana KL, Tobias ME, Kothbauer KF, Jallo GI. Extent of surgical resection of malignant astrocytomas of the spinal cord: outcome analysis of 35 patients. Neurosurgery. 2008;63(1):55–61.

    Article  PubMed  Google Scholar 

  98. Nakamura M, Ishii K, Watanabe K, Tsuji T, Takaishi H, Matsumoto M, et al. Surgical treatment of intramedullary spinal cord tumors: prognosis and complications. Spinal Cord. 2008;46(4):282–6.

    Article  CAS  PubMed  Google Scholar 

  99. Raco A, Esposito V, Lenzi J, Piccirilli M, Delfini R, Cantore G. Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery. 2005;56(5):81.

    Google Scholar 

  100. Sandalcioglu IE, Gasser T, Asgari S, Lazorisak A, Engelhorn T, Egelhof T, et al. Functional outcome after surgical treatment of intramedullary spinal cord tumors: experience with 78 patients. Spinal Cord. 2005;43(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  101. Wong AP, Dahdaleh NS, Fessler RG, Melkonian SC, Lin Y, Smith ZA, et al. Risk factors and long-term survival in adult patients with primary malignant spinal cord astrocytomas. J Neuro-Oncol. 2013;115(3):493–503.

    Article  CAS  Google Scholar 

  102. Engelhard HH, Villano JL, Porter KR, Stewart AK, Barua M, Barker FG, et al. Clinical presentation, histology, and treatment in 430 patients with primary tumors of the spinal cord, spinal meninges, or cauda equina. J Neurosurg Spine. 2010;13(1):67–77.

    Article  PubMed  Google Scholar 

  103. Figueiredo N, Brooks N, Resnick DK. Evidence-based review and guidelines for the management of myxopapillary and intramedullary ependymoma. J Neurosurg Sci. 2013;57(4):327–41.

    CAS  PubMed  Google Scholar 

  104. Jinnai T, Hoshimaru M, Koyama T. Clinical characteristics of spinal nerve sheath tumors: analysis of 149 cases. Neurosurgery. 2005;56(3):510–5.

    Article  PubMed  Google Scholar 

  105. Juthani RG, Bilsky MH, Current Management VMA. Treatment modalities for intramedullary spinal cord tumors. Curr Treat Options in Oncol. 2015;16(8):0.

    Article  Google Scholar 

  106. Karikari IO, Nimjee SM, Hodges TR, Cutrell E, Hughes BD, Powers CJ, et al. Impact of tumor histology on resectability and neurological outcome in primary intramedullary spinal cord tumors: a single-center experience with 102 patients. Neurosurgery. 2011;68(1):97; discussion 197

    Article  Google Scholar 

  107. Setzer M, Vatter H, Marquardt G, Seifert V, Vrionis FD. Management of spinal meningiomas: surgical results and a review of the literature. Neurosurg Focus. 2007;23(4):E14.

    Article  PubMed  Google Scholar 

  108. Arrigo RT, Kalanithi P, Cheng I, Alamin T, Carragee EJ, Mindea SA, et al. Predictors of survival after surgical treatment of spinal metastasis. Neurosurgery. 2011;68(3):674–81.

    Article  PubMed  Google Scholar 

  109. Helweg-Larsen S, Sørensen PS, Kreiner S. Prognostic factors in metastatic spinal cord compression: a prospective study using multivariate analysis of variables influencing survival and gait function in 153 patients. Int J Radiat Oncol Biol Phys. 2000;46(5):1163–9.

    Article  CAS  PubMed  Google Scholar 

  110. Jansson K, Bauer HCF. Survival, complications and outcome in 282 patients operated for neurological deficit due to thoracic or lumbar spinal metastases. Eur Spine J. 2006;15(2):196–202.

    Article  PubMed  Google Scholar 

  111. North RB, LaRocca VR, Schwartz J, North CA, Zahurak M, Davis RF, et al. Surgical management of spinal metastases: analysis of prognostic factors during a 10-year experience. J Neurosurg Spine. 2005;2(5):564–73.

    Article  PubMed  Google Scholar 

  112. van der Linden YM, Dijkstra S, Vonk EJA, Marijnen CAM, Leer JWH. Prediction of survival in patients with metastases in the spinal column. Results based on a randomized trial of radiotherapy. Cancer. 2005;103(2):320–8.

    Article  PubMed  Google Scholar 

  113. Vanek P, Bradac O, Trebicky F, Saur K, de Lacy P, Benes V. Influence of the preoperative neurological status on survival after the surgical treatment of symptomatic spinal metastases with spinal cord compression. Spine (Phila Pa 1976). 2015;40(23):1824–30.

    Google Scholar 

  114. Wibmer C, Leithner A, Hofmann G, Clar H, Kapitan M, Berghold A, et al. Survival analysis of 254 patients after manifestation of spinal metastases: evaluation of seven preoperative scoring systems. Spine (Phila Pa 1976). 2011;36(23):1977–86.

    Article  Google Scholar 

  115. Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res. 1980;153(6):106–20.

    Google Scholar 

  116. Enneking WF. A system of staging musculoskeletal neoplasms. Clin Orthop Relat Res. 1986;204:9–24.

    Google Scholar 

  117. Boriani S, Weinstein JN, Biagini R. Primary bone tumors of the spine: terminology and surgical staging. Spine (Phila Pa 1976). 1997;22(9):1036–44.

    Article  CAS  Google Scholar 

  118. Finkelstein JA, Zaveri G, Wai E, Vidmar M, Kreder HJ, Chow E. A population-based study of surgery for spinal metastases. Survival rates and complications. J Bone Joint Surg Br. 2003;85(7):1045–50.

    Article  CAS  PubMed  Google Scholar 

  119. Hosono N, Ueda T, Tamura D, Aoki Y, Yoshihawa H. Prognostic relevance of clinical symptoms in patients with spinal metastases. Clin Orthop Relat Res. 2005;436:196–201.

    Article  Google Scholar 

  120. Laufer I, Sciubba DM, Madera M, Bydon A, Witham TF, Gokaslan ZL, et al. Surgical management of metastatic spinal tumors. Cancer Control. 2012;19(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  121. Sciubba DM, Gokaslan ZL, Suk I, Suki D, Maldaun MVC, McCutcheon IE, et al. Positive and negative prognostic variables for patients undergoing spine surgery for metastatic breast disease. Eur Spine J. 2007;16(10):1659–67.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sciubba DM, Goodwin CR, Yurter A, Ju D, Gokaslan ZL, Fisher CG, et al. A systematic review of clinical outcomes and prognostic factors for patients undergoing surgery for spinal metastases secondary to breast cancer. Global Spine J. 2016;6(5):482–96.

    Article  PubMed  Google Scholar 

  123. Zadnik PL, Hwang L, Ju DG, Groves M, Sui J, Yurter A, et al. Prolonged survival following aggressive treatment for metastatic breast cancer in the spine. Clin Exp Metastasis. 2014;31(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  124. Eleraky M, Papanastassiou I, Vrionis FD. Management of metastatic spine disease. Curr Opin Support Palliat Care. 2010;4(3):182–8.

    Article  PubMed  Google Scholar 

  125. Ju DG, Zadnik PL, Groves M, Hwang L, Kaloostian PE, Wolinsky J, et al. Factors associated with improved outcomes following decompressive surgery for prostate cancer metastatic to the spine. Neurosurgery. 2013;73(4):657–66.

    Article  PubMed  Google Scholar 

  126. Katagiri H, Okada R, Takagi T, Takahashi M, Murata H, Harada H, et al. New prognostic factors and scoring system for patients with skeletal metastasis. Cancer Med. 2014;3(5):1359–67.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Quraishi NA, Rajagopal TS, Manoharan SR, Elsayed S, Edwards KL, Boszczyk BM. Effect of timing of surgery on neurological outcome and survival in metastatic spinal cord compression. Eur Spine J. 2013;22(6):1383–8.

    Article  CAS  PubMed  Google Scholar 

  128. Chen H, Xiao J, Yang X, Zhang F, Yuan W. Preoperative scoring systems and prognostic factors for patients with spinal metastases from hepatocellular carcinoma. Spine (Phila Pa 1976). 2010;35(23):E1346.

    Article  Google Scholar 

  129. Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine (Phila Pa 1976). 2005;30(19):2186–91.

    Article  Google Scholar 

  130. Leithner A, Radl R, Gruber G, Hochegger M, Leithner K, Welkerling H, et al. Predictive value of seven preoperative prognostic scoring systems for spinal metastases. Eur Spine J. 2008;17(11):1488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Majeed H, Kumar S, Bommireddy R, Klezl Z, Calthorpe D. Accuracy of prognositc scores in decision making and predicting outcomes in metastatic spine disease. Ann R Coll Surg Engl. 2012;94(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  132. Meng T, Chen R, Zhong N, Fan T, Li B, Yin H, et al. Factors associated with improved survival following surgical treatment for metastatic prostate cancer in the spine: retrospective analysis of 29 patients in a single center. World J Surg Oncol. 2016;14:200.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Papstefanou S, Alpantaki K, Akra G, Katonis P. Predictive value of Tokuhashi and Tomita scores in patients with metastatic spine disease. Acta Orthop Traumatol Turc. 2012;46(1):50–6.

    Article  Google Scholar 

  134. Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the spine oncology study group. Spine (Phila Pa 1976). 2010;35(22):E1229.

    Article  Google Scholar 

  135. Bydon M, Ma TM, Xu R, Weingart J, Olivi A, Gokaslan ZL, et al. Surgical outcomes of craniocervial junction meningiomas: a series of 22 consecutive patients. Clin Neurol Neurosurg. 2014;117:71–9.

    Article  PubMed  Google Scholar 

  136. Kingdom TT, Nockels RP, Kaplan MJ. Transoral-transpharyngeal approach to the craniocervical junction. Otolaryngol Head Neck Surg. 1995;113(4):393–400.

    Article  CAS  PubMed  Google Scholar 

  137. Sen CN, Sekhar LN. Surgical management of anteriorly placed lesions at the craniocervical junction—an alternative approach. Acta Neurochir. 1991;108(1–2):70–7.

    Article  CAS  PubMed  Google Scholar 

  138. Rajpal S, Hwang R, Mroz TE, Steinmetz MP. Comparing vertebral body reconstruction implants for the treatment of thoracic and lumbar metastatic spinal tumors: a consecutive case series of 37 patients. J Spinal Disord Tech. 2012;25(2):85–91.

    Article  PubMed  Google Scholar 

  139. Baker JF, Shafqat A, Devitt A, McCabe JP. Surgical management of metastatic lesions at the cervicothoracic junction. J Craniovertebr Junction Spine. 2015;6(3):115–9.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lau D, Chou D. Posterior thoracic corpectomy with cage reconstruction for metastatic spinal tumors: comparing the mini-open approach to the open approach. J Neurosurg Spine. 2015;23(2):217–27.

    Article  PubMed  Google Scholar 

  141. Zaikova O, Giercksky K, Fosså SD, Kvaløy S, Johannesen TB, Skjeldel S. A population-based study of spinal metastatic disease in South-East Norway. Clin Oncol (R Coll Oncol). 2009;21(10):753–9.

    Article  CAS  Google Scholar 

  142. Park J, Im SB, Jeong JH, Hwang SC, Shin D, Kim B. The transmanubrial approach for cervicothoracic junction lesions: feasibility, limitations, and advantages. J Korean Neurosurg Soc. 2015;58(3):236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Payne WG, Naidu DK, Wheeler CK, Barkoe D, Mentis M, Salas RE, et al. Woueh cancer. Eplasty. 2008;8(e9)

    Google Scholar 

  144. Fourney DR, Gokaslan ZL. Use of “MAPS” for determining the optimal surgical approach to metastatic disease of the thoracolumbar spine: anterior, posterior, or combined. J Neurosurg Spine. 2005;2(1):40–9.

    Article  PubMed  Google Scholar 

  145. Joubert C, Adetchessi T, Peltier E, Graillon T, Dufour H, Blondel B, et al. Corpectomy and vertebral body reconstruction with expandable cage placement and osteosynthesis via the single stage posterior approach: a retrospective series of 34 patients with thoracic and lumbar spine vertebral body tumors. World Neurosurg. 2015;84(5):1412–22.

    Article  PubMed  Google Scholar 

  146. Regan JJ, Mack MJ, Picetti GD III. A technical report on video-assisted thoracoscopy in thoracic spinal surgery. Preliminary description. Spine (Phila Pa 1976). 1995;20(7):831–7.

    Article  CAS  Google Scholar 

  147. Sasani M, Ozer AF, Oktenoglu T, Kaner T, Aydin S, Canbulat N, et al. Thoracoscopic surgical approaches for treating various thoracic spinal region diseases. Turk Neurosurg. 2010;20(3):373–81.

    PubMed  Google Scholar 

  148. Chou D, Lu DC. Mini-open transpedicular corpectomies with expandable cage reconstruction. Technical note. J Neurosurg Spine. 2011;14(1):71–7.

    Article  PubMed  Google Scholar 

  149. Hansen-Algenstaedt N, Kwan MK, Algenstaedt P, Chiu CK, Viezens L, Chan TS, et al. Comparison between minimally invasive surgery and conventional open surgery for patients with spinal metastasis: a prospective propensity score-matched study. Spine (Phila Pa 1976). 2017;42(10):789–97.

    Article  Google Scholar 

  150. Huang T, Hsu RW, Li Y, Cheng C. Minimal Access Spinal Surgery (MASS) in treating thoracic spine metastasis. Spine (Phila Pa 1976). 2006;31(16):1860–3.

    Article  Google Scholar 

  151. Kumar N, Malhotra R, Maharajan K, Zaw AS, Wu PH, Makandura MC, et al. Metastatic spine tumor surgery: a comparative study of minimally invasive approach using percutaneous pedicle screws fixation versus open approach. Clin Spine Surg. 2017;30(8):E1021.

    Article  Google Scholar 

  152. McGirt MJ, Parker SL, Lerner J, Engelhart L, Knight T, Wang MY. Comparative analysis of perioperative surgical site infection after minimally invasive versus open posterior/transforaminal lumbar interbody fusion: analysis of hospital billing and discharge data from 5170 patients. J Neurosurg Spine. 2011;14(6):771–8.

    Article  PubMed  Google Scholar 

  153. Parker SL, Adogwa O, Witham TF, Aaronson O, Cheng JS, McGirt MJ. Post-operative infection after minimally invasive versus open Transforaminal Lumbar Interbody Fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg. 2011;54(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  154. Dabravolski D, Eßer J, Lahm A, Merk H. Surgical treatment of tumours and metastases of the spine by minimally invasive cavity-coblation method. J Orthop Surg (Hong Kong). 2017;25(1):1–14.

    Article  Google Scholar 

  155. Saito T, Arizono T, Maeda T, Terada K, Iwamoto Y. A novel technique for surgical resection of spinal meningioma. Spine (Phila Pa 1976). 2001;26(16):1805–8.

    Article  CAS  Google Scholar 

  156. Ogden AT, Fessler RG. Minimally invasive resection of intramedullary ependymoma: case report. Neurosurgery. 2009;65(6):E1204.

    Article  Google Scholar 

  157. Manzano G, Green BA, Levi ADO. Contemporary management of adult intramedullary spinal tumors—pathology and neurological outcomes related to surgical resection. Spinal Cord. 2008;46(8):540–6.

    Article  CAS  PubMed  Google Scholar 

  158. McCormick PC. Microsurgical resection of intramedullary spinal cord hemangioblastoma. Neurosurg Focus. 2014;37(Suppl 2):Video 10.

    Article  PubMed  Google Scholar 

  159. Tredway TL. Minimally invasive approaches for the treatment of intramedullary spinal tumors. Neurosurg Clin N Am. 2014;25(2):327–36.

    Article  PubMed  Google Scholar 

  160. Takami T, Naito K, Yamagata T, Ohata K. Surgical management of spinal intramedullary tumors: radical and safe strategy for benign tumors. Neurol Med Chir (Tokyo). 2015;55(4):317–27.

    Article  Google Scholar 

  161. Rampersaud YR, Annand N, Dekutoski MB. Use of minimally invasive surgical techniques in the management of thoracolumbar trauma: current concepts. Spine (Phila Pa 1976). 2006;31(11S):S102.

    Google Scholar 

  162. Dalbayrak S, Yaman O, Ozer AF. Minimally invasive approaches in metastatic spinal tumor surgery. Turk Neurosurg. 2015;25(3):357–61.

    PubMed  Google Scholar 

  163. Chou D, Wang VY. Trap-door rib-head osteotomies for posterior placement of expandable cages after transpedicular corpectomy: an alternative to lateral extracavitary and costotransversectomy approaches. Technical note. J Neurosurg Spine. 2009;10(1):40–5.

    Article  PubMed  Google Scholar 

  164. Payer M, Sottas C. Mini-open anterior approach for corpectomy in the thoracolumbar spine. Surg Neurol. 2008;69(1):25–31.

    Article  PubMed  Google Scholar 

  165. Turel MK, Kerolus M, O’Toole JE. Minimally invasive “separation surgery” plus adjuvsant stereotactic radiotherapy in the management of spinal epidural metastases. J Craniovertebr Junction Spine. 2017;8(2):119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Rasool MT, Fatima K, Manzoor NA, Mustafa SA, Maqbool LM, Qamar WS, et al. Profile of malignant spinal cord compression: one year study at regional cancer center. Indian J Palliat Care. 2016;22(2):125–9.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Donnelly DJ, Abd-El-Barr MM, Lu Y. Minimally invasive muscle sparing posterior-only approach for lumbar circumferential decompression and stabilization to treat spine metastasis—technical report. World Neurosurg. 2015;84(5):1484–90.

    Article  PubMed  Google Scholar 

  168. Tomycz L, Parker SL, McGirt MJ. Minimally invasive transpsoas L2 corpectomy and percutaneous pedicle screw fixation for osteoporotic burst fracture in the elderly: a technical report. J Spinal Disord Tech. 2015;28(2):53–60.

    Article  PubMed  Google Scholar 

  169. Theologis AA, Tabaraee E, Toogood P, Kennedy A, Birk H, McClellan RT, et al. Anterior corpectomy via the mini-open, extreme lateral, transpsoas approach combined with short-segment posterior fixation for single-level traumatic lumbar burst fractures: analysis of health-related quality of life outcomes and patient satisfaction. J Neurosurg Spine. 2016;24(1):60–8.

    Article  PubMed  Google Scholar 

  170. Patel NB, Dodd ZH, Voorhies J, Horn EM. Minimally invasive lateral transpsoas approach for spinal discitis and osteomyelitis. J Clin Neurosci. 2015;22(11):1753–7.

    Article  PubMed  Google Scholar 

  171. Boah AO, Perin NI. Lateral access to paravertebral tumor. J Neurosurg Spine. 2016;24(5):824–8.

    Article  PubMed  Google Scholar 

  172. Billinghurst J, Akbarnia BA. Extreme lateral interbody fusion—XLIF. Curr Orthop Pract. 2009;20(3):238–51.

    Article  Google Scholar 

  173. Serak J, Vanni S, Levi ADO. The extreme lateral approach for treatment of thoracic and lumbar vertebral body metastases. J Neurosurg Sci. 2015; Epub ahead of print

    Google Scholar 

  174. Tan T, Chu J, Thien C, Wang YY. Minimally invasive direct lateral corpectomy of the thoracolumbar spine for metastatic spinal cord compression. J Neurol Surg A Cent Eur Neurosurg. 2017;78(4):358–67.

    Article  PubMed  Google Scholar 

  175. Gandhoke GS, Tempel ZJ, Bonfield CM, Madhok R, Okonkwo DO, Kanter AS. Technical nuances of the minimally invasive extreme lateral approach to treat thoracolumbar burst fractures. Eur Spine J. 2015;24(Suppl 3):353–60.

    Article  PubMed  Google Scholar 

  176. Burton AW, Rhines LD, Mendel E. Vertebroplasty and kyphoplasty: a comprehensive review. Neurosurg Focus. 2005;18(3):e1.

    Article  PubMed  Google Scholar 

  177. Pizzoli AL, Brivio LR, Caudana R, Vittorini E. Percutaneous CT-guided vertebroplasty in the management of osteoporotic fractures and dorsolumbar metastases. Orthop Clin North Am. 2009;40(4):458, vii.

    Article  Google Scholar 

  178. Lapras C, Mottolese C, Deruty R, Lapras C, Remond J, Duquesnel J. Percutaneous injection of methyl-metacrylate in osteoporosis and severe vertebral osteolysis (Galibert’s technic). Ann Chir. 1989;43(5):371–6.

    CAS  PubMed  Google Scholar 

  179. Hide IG, Gangi A. Percutaneous vertebroplasty: history, technique and current perspectives. Clin Radiol. 2004;59:461–7.

    Article  CAS  PubMed  Google Scholar 

  180. Galibert P, Deramond H, Rosat P, Le Gars D. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie. 1987;33(2):166–168.

    Google Scholar 

  181. Kaemmerlen P, Thiesse P, Jonas P, Bérard CL, Duquesnel J, Bascoulergue Y, et al. Percutaneous injection of orthopedic cement in metastatic vertebral lesions. N Engl J Med. 1989;321(2):121.

    CAS  PubMed  Google Scholar 

  182. Gangi A, Kastler BA, Dietemann JL. Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. AJNR Am J Neuroradiol. 1994;15(1):83–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology. 1996;199(1):241–7.

    Article  CAS  PubMed  Google Scholar 

  184. Cotten A, Dewatre F, Cortet B, Assaker R, Leblond D, Duquesnoy B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology. 1996;200(2):525–30.

    Article  CAS  PubMed  Google Scholar 

  185. Barbero S, Casorzo I, Durando M, Mattone G, Tappero C, Venturi C, et al. Percutaneous vertebroplasty: the follow-up. Radiol Med. 2008;113(1):101–13.

    Article  CAS  PubMed  Google Scholar 

  186. Krueger A, Bliemel C, Zettl R, Ruchholtz S. Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: a systematic review of the literature. Eur Spine J. 2009;18:1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Sinha N, Padegal V, Satyanarayana S, Santosh HK. Pulmonary cement embolization after vertebroplasty, an uncommon presentation of pulmonary embolism: a case report and literature review. Lung India. 2015;32(6):602–5.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Ratliff J, Nguyen T, Heiss J. Root and spinal cord compression from methylmethacrylate vertebroplasty. Spine. 2001;26(13):300.

    Article  Google Scholar 

  189. Duran C, Sirvanci M, Aydoğan M, Ozturk E, Ozturk C, Akman C. Pulmonary cement embolism: a complication of percutaneous vertebroplasty. Acta Radiol. 2007;48(8):854–9.

    Article  CAS  PubMed  Google Scholar 

  190. Reidy D, Ahn H, Mousavi P, Finkelstein J, Whyne CM. A biomechanical analysis of intravertebral pressures during vertebroplasty of cadaveric spines with and without simulated metastases. Spine. 2003;28(14):1534–9.

    PubMed  Google Scholar 

  191. Alvarez L, Pérez-Higueras A, Quiñones D, Calvo E, Rossi R. Vertebroplasty in the treatment of vertebral tumors: postprocedural outcome and quality of life. Eur Spine J. 2003;12(4):356–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ambrosanio G, Lavanga A, Vassallo P, Izzo R, Diano AA, Muto M. Vertebroplasty in the treatment of spine disease. Interv Neuroradiol. 2005;11(4):309–23.

    Article  CAS  PubMed  Google Scholar 

  193. Barr JD, Barr MS, Lemley TJ, McCann RM. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine. 2000;25(8):923–8.

    Article  CAS  PubMed  Google Scholar 

  194. Caudana R, Renzi Brivio L, Ventura L, Aitini E, Rozzanigo U, Barai G. CT-guided percutaneous vertebroplasty: personal experience in the treatment of osteoporotic fractures and dorsolumbar metastases. Radiol Med. 2008;113(1):114–33.

    Article  CAS  PubMed  Google Scholar 

  195. Chen L, Ni R, Liu S, Liu Y, Jin Y, Zhu X, et al. Percutaneous vertebroplasty as a treatment for painful osteoblastic metastatic spinal lesions. J Vasc Interv Radiol. 2011;22(4):525–8.

    Article  CAS  PubMed  Google Scholar 

  196. Kobayashi T, Arai Y, Takeuchi Y, Nakajima Y, Shioyama Y, Sone M, et al. Phase I/II clinical study of percutaneous vertebroplasty (PVP) as palliation for painful malignant vertebral compression fractures (PMVCF): JIVROSG-0202. Ann Oncol. 2009;20(12):1943–7.

    Article  CAS  PubMed  Google Scholar 

  197. Lee B, Franklin I, Lewis JS, Coombes RC, Leonard R, Gishen P, et al. The efficacy of percutaneous vertebroplasty for vertebral metastases associated with solid malignancies. Eur J Cancer. 2009;45(9):1597–602.

    Article  PubMed  Google Scholar 

  198. Nirala AP, Vatsal DK, Husain M, Gupta C, Chawla J, Kumar V, et al. Percutaneous vertebroplasty: an experience of 31 procedures. Neurol India. 2003;51(4):490–2.

    CAS  PubMed  Google Scholar 

  199. Qian Z, Sun Z, Yang H, Gu Y, Chen K, Wu G. Kyphoplasty for the treatment of malignant vertebral compression fractures caused by metastases. J Clin Neurosci. 2011;18(6):763–7.

    Article  PubMed  Google Scholar 

  200. Sun G, Cong Y, Xie Z, Jin P, Li F, Yi Y, et al. Percutaneous vertebroplasty using instruments and drugs made in China for vertebral metastases. Chin Med J. 2003;116(8):1207–12.

    PubMed  Google Scholar 

  201. Sun G, Li L, Jin P, Liu X, Li M. Percutaneous vertebroplasty for painful spinal metastasis with epidural encroachment. J Surg Oncol. 2014;110(2):123–8.

    Article  PubMed  Google Scholar 

  202. Xie P, Zhao Y, Li G. Efficacy of percutaneous vertebroplasty in patients with painful vertebral metastases: a retrospective study in 47 cases. Clin Neurol Neurosurg. 2015;138:157–61.

    Article  PubMed  Google Scholar 

  203. Hentschel SJ, Rhines LD, Shah HN, Burton AW, Mendel E. Percutaneous vertebroplasty in vertebra plana secondary to metastasis. J Spinal Disord Tech. 2004;17(6):554–7.

    Article  PubMed  Google Scholar 

  204. Amoretti N, Diego P, Amélie P, Andreani O, Foti P, Schmid-Antomarchi H, et al. Percutaneous vertebroplasty in tumoral spinal fractures with posterior vertebral wall involvement: feasibility and safety. Eur J Radiol. 2018;104:38–42.

    Article  PubMed  Google Scholar 

  205. Lieberman IH, Dudeney S, Reinhardt MK, Bell G. Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine. 2001;26(14):1631–8.

    Article  CAS  PubMed  Google Scholar 

  206. Eck JC, Nachtigall D, Humphreys SC, Hodges SD. Comparison of vertebroplasty and balloon kyphoplasty for treatment of vertebral compression fractures: a meta-analysis of the literature. Spine J. 2008;8(3):488–97.

    Article  PubMed  Google Scholar 

  207. Hulme PA, Krebs J, Ferguson SJ, Berlemann U. Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine. 2006;31(17):1983–2001.

    Article  PubMed  Google Scholar 

  208. Siemionow K, Lieberman I. Vertebral augmentation in osteoporosis and bone metastasis. Curr Opin Support Palliat Care. 2007;1(4):323–7.

    Article  PubMed  Google Scholar 

  209. Berenson J, Pflugmacher R, Jarzem P, Zonder J, Schechtmna K, Tillman JB, et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(3):225–35.

    Article  PubMed  Google Scholar 

  210. Dalbayrak S, Onen MR, Yilmaz M, Naderi S. Clinical and radiographic results of balloon kyphoplasty for treatment of vertebral body metastases and multiple myelomas. J Clin Neurosci. 2010;17(2):219–24.

    Article  PubMed  Google Scholar 

  211. Pflugmacher R, Beth P, Schroeder RJ, Schaser KD, Melcher I. Balloon kyphoplasty for the treatment of pathological fractures in the thoracic and lumbar spine caused by metastasis: one-year follow-up. Acta Radiol. 2007;48(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  212. Fourney DR, Schomer DF, Nader R, Chlan-Fourney J, Suki D, Ahrar K, et al. Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg. 2003;98(Spine 1):21–30.

    PubMed  Google Scholar 

  213. Bae JW, Gwak H, Kim S, Joo J, Shin SH, Yoo H, et al. Percutaneous vertebroplasty for patients with metastatic compression fractures of the thoracolumbar spine: clinical and radiological factors affecting functional outcomes. Spine J. 2016;16(3):355–64.

    Article  PubMed  Google Scholar 

  214. Ontario HQ. Vertebral augmentation involving vertebroplasty or kyphoplasty for cancer-related vertebral compression fractures: a systematic review. Ont Health Technol Assess Ser. 2016;16(11):1–202.

    Google Scholar 

  215. Mendel E, Bourekas E, Gerszten PC, Golan JD. Percutaneous techniques in the treatment of spine tumors. What are the diagnostic and therapeutic indications and outcomes? Spine (Phila Pa 1976). 2009;34(22S):S100.

    Google Scholar 

  216. Schroeder J, Ecker E, Skelly A, Kaplan L. Cement augmentation in spinal tumors: a systematic review comparing vertebroplasty and kyphoplasty. Evid Based Spine Care J. 2011;2(4):35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Chang X, Lv Y, Chen B, Li H, Han X, Yang K, et al. Vertebroplasty versus kyphoplasty in osteoporotic vertebral compression fracture: a meta-analysis of prospective comparative studies. Int Orthop. 2015;39(3):491–500.

    Article  PubMed  Google Scholar 

  218. Stephenson M, Glaenzer B, Malamis A. Percutaneous minimally invasive techniques in the treatment of spinal metastases. Curr Treat Options in Oncol. 2016;17(11):1–11.

    Article  Google Scholar 

  219. Laratta JL, Shillingford JN, Lombardi JM, Mueller JD, Reddy H, Saifi C, et al. Utilization of vertebroplasty and kyphoplasty procedures throughout the United States over a recent decade: an analysis of the Nationwide Inpatient Sample. J Spine Surg. 2017;3(3):364–70.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Boszczyk BM, Bierschneider M, Hauck S, Vastmans J, Potulski M, Beisse R, et al. [Conventional and semi-open kyphoplasty]. Orthopade. 2004;33(1):13–21.

    Google Scholar 

  221. Schaefer O, Lohrmann C, Markmiller M, Uhrmeister P, Langer M. Technical innovation. Combined treatment of a spinal metastasis with radiofrequency heat ablation and vertebroplasty. AJR Am J Roentgenol. 2003;180(4):1075–7.

    Article  PubMed  Google Scholar 

  222. Grönemeyer DHW, Schirp S, Gevargez A. Image-guided radiofrequency ablation of spinal tumors: preliminary experience with an expandable array electrode. Cancer J (Sudbury, Mass). 2002;8(1):33–9.

    Article  Google Scholar 

  223. Wallace AN, Tomasian A, Vaswani D, Vyhmeister R, Chang RO, Jennings JW. Radiographic local control of spinal metastases with percutaneous radiofrequency ablation and vertebral augmentation. Am J Neuroradiol. 2016;37(4):759–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Clarençon F, Jean B, Pham H, Cormier E, Bensimon G, Rose M, et al. Value of percutaneous radiofrequency ablation with or without percutaneous vertebroplasty for pain relief and functional recovery in painful bone metastases. Skelet Radiol. 2013;42(1):25–36.

    Article  Google Scholar 

  225. Hoffman RT, Jakobs TF, Trumm C, Weber C, Helmberger TK, Reiser MF. Radiofrequency ablation in combination with osteoplasty in the treatment of painful metastatic bone disease. J Vasc Interv Radiol. 2008;19(3):419–25.

    Article  Google Scholar 

  226. Lane M, Le H, Lee S, Young C, Heran M, Badii M, et al. Combination radiofrequency ablation and cementoplasty for palliative treatment of painful neoplastic bone metastasis: experience with 53 treated lesions in 36 patients. Skelet Radiol. 2011;40(1):25–32.

    Article  Google Scholar 

  227. Orgera G, Krokidis M, Matteoli M, Varano G, La Verde G, David V, et al. Percutaneous vertebroplasty for pain management in patients with multiple myeloma: is radiofrequency ablation necessary? Cardiovasc Intervent Radiol. 2014;37(1):203–10.

    Article  PubMed  Google Scholar 

  228. Madaelil T, Wallace A, Jennings J. Radiofrequency ablation alone or in combination with cementoplasty for local control and pain palliation of sacral metastases: preliminary results in 11 patients. Skelet Radiol. 2016;45(9):1213–9.

    Article  Google Scholar 

  229. Munk PL, Rashid F, Heran MK, Papirny M, Liu DM, Malfair D, et al. Combined cementoplasty and radiofrequency ablation in the treatment of painful neoplastic lesions of bone. J Vasc Interv Radiol. 2009;20(7):903–11.

    Article  PubMed  Google Scholar 

  230. Reyes M, Georgy M, Brook L, Ortiz O, Brook A, Agarwal V, et al. Multicenter clinical and imaging evaluation of targeted radiofrequency ablation (t-RFA) and cement augmentation of neoplastic vertebral lesions. J Neurointerv Surg. 2018;10(2):176–82.

    Article  PubMed  Google Scholar 

  231. Goetz MP, Callstrom MR, Charboneau JW, Farrell MA, Maus TP, Welch TJ, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol. 2004;22(2):300–6.

    Article  PubMed  Google Scholar 

  232. Cazzato RL, Garnon J, Caudrelier J, Rao PP, Koch G, Gangi A. Low-power bipolar radiofrequency ablation and vertebral augmentation for the palliative treatment of spinal malignancies. Int J Hyperth. 2018;34(8):1282–8.

    Article  Google Scholar 

  233. Dupuy DE, Liu D, Hartfeil D, Hanna L, Blume JD, Ahrar K, et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer. 2010;116(4):989–97.

    Article  PubMed  Google Scholar 

  234. Raygor KP, Than KD, Chou D, Mummaneni P. Comparison of minimally invasive transspinous and open approaches for thoracolumbar intradural-extramedullary spinal tumors. Neurosurg Focus. 2015;39(2):E12.

    Article  PubMed  Google Scholar 

  235. Zong S, Zeng G, Du L, Gao T, Zhao J. Treatment results in the different surgery of intradural extramedullary tumor of 122 cases. PLoS One. 2014;9(11):e111495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Wong AP, Lall RR, Dahdaleh NS, Lawton CD, Smith ZA, Wong RH, et al. Comparison of open and minimally invasive surgery for intradural-extramedullary spine tumors. Neurosurg Focus. 2015;39(2):E11.

    Article  PubMed  Google Scholar 

  237. Lu DC, Chou D, Mummaneni P. A comparison of mini-open and open approaches for resection of thoracolumbar intradural spinal tumors. J Neurosurg Spine. 2011;14(6):758–64.

    Article  PubMed  Google Scholar 

  238. Hikata T, Isogai N, Shiono Y, Funao H, Okada E, Fujita N, et al. A retrospective cohort study comparing the safety and efficacy of minimally invasive versus open surgical techniques in the treatment of spinal metastases. Clin Spine Surg. 2017;30(8):E1087.

    Article  Google Scholar 

  239. Zembower TR. Epidemiology of infections in cancer patients. In: Rosen ST, editor. Infectious complications in cancer patients. Heidelberg, New York, Dordrecht, London: Springer; 2014. p. 43–89.

    Chapter  Google Scholar 

  240. Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472(6):1711–7.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Hamilton DK, Kanter AS, Bolinger BD, Mundis GM Jr, Nguyen S, Mummaneni P, et al. Reoperation rates in minimally invasive, hybrid and open surgical treatment for adult spinal deformity with minimum 2-year follow-up. Eur Spine J. 2016;25(8):2605–11.

    Article  PubMed  Google Scholar 

  242. Mannion RJ, Nowitzke AM, Wood MJ. Promoting fusion in minimally invasive lumbar interbody stabilization with low-dose bone morphogenic protein-2—but what is the cost? Spine J. 2011;11(6):527–33.

    Article  PubMed  Google Scholar 

  243. Goldstein HE, Anderson RC. Classification and management of pediatric craniocervical injuries. Neurosurg Clin N Am. 2017;28(1):73–90.

    Article  PubMed  Google Scholar 

  244. Wu RH, Fraser JF, Härtl R. Minimal access: meta-analysis of fusion RatesVersus: meta-analysis of fusion rates open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine (Phila Pa 1976). 2010;35(26):2273–81.

    Article  Google Scholar 

  245. Amankulor NM, Xu R, Iorgulescu JB, Chapman T, Reiner AS, Riedel E, et al. The incidence and patterns of hardware failure after separation surgery in patients with spinal metastatic tumors. Spine J. 2014;14(9):1850–9.

    Article  PubMed  Google Scholar 

  246. Rehder R, Abd-El-Barr MM, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32(1):43–54.

    Article  PubMed  Google Scholar 

  247. Alaraj A, Charbel FT, Birk D, Tobin M, Luciano C, Banerjee PP, et al. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery. 2013;72(suppl_1):A123.

    Google Scholar 

  248. Gasco J, Patel A, Ortega-Barnett J, Branch D, Desai S, Kuo YF, et al. Virtual reality spine surgery simulation: an empirical study of its usefulness. Neurol Res. 2014;36(11):968–73.

    Article  PubMed  Google Scholar 

  249. Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, et al. Mixed-reality simulation for neurosurgical procedures. Neurosurgery. 2013;73(suppl_1):S145.

    Google Scholar 

  250. Waran V, Narayanan V, Karuppiah R, Owen SLF, Aziz T. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg. 2014;120(2):489–92.

    Article  PubMed  Google Scholar 

  251. Grant CA, Izatt MT, Labrom RD, Askin GN, Glatt V. Use of 3D printing in complex spinal surgery: historical perspectives, current usage, and future directions. Tech Orthop. 2016;31(3):172–80.

    Article  Google Scholar 

  252. Izatt MT, Thorpe PLPJ, Thompson RG, D’Urso PS, Adam CJ, Earwaker JWS, et al. The use of physical biomodelling in complex spinal surgery. Eur Spine J. 2007;16(9):1507–18.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Provaggi E, Leong JJ, Kalaskar DM. Applications of 3D printing in the management of severe spinal conditions. Proc IMechE Part H. 2016;231(6):471–86.

    Google Scholar 

  254. Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, et al. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery. 2016;159(6):1485–500.

    Article  PubMed  Google Scholar 

  255. Choy WJ, Mobbs RJ, Wilcox B, Phan S, Phan K, Sutterlin CE III. Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg. 2017;105:1032.e13–7.

    Article  Google Scholar 

  256. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE III, Phan K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine. 2017;26(4):513–8.

    Article  Google Scholar 

  257. Yang J, Cai H, Lv J, Zhang K, Leng H, Sun C, et al. In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting. Spine (Phila Pa 1976). 2014;39(8):E492.

    Article  Google Scholar 

  258. de Beer N, Scheffer C. Reducing subsidence risk by using rapid manufactured patient-specific intervertebral disc implants. Spine J. 2012;12(11):1060–6.

    Article  PubMed  Google Scholar 

  259. Joseph JR, Smith BW, Liu X, Park P. Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus. 2017;42(5):E2.

    Article  PubMed  Google Scholar 

  260. Barzilay Y, Schroeder JE, Hiller N, Singer G, Hasharoni A, Safran O, et al. Robot-assisted vertebral body augmentation: a radiation reduction tool. Spine (Phila Pa 1976). 2014;39(2):153–7.

    Article  Google Scholar 

  261. Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery. 2013;72(Suppl_1):A18.

    Google Scholar 

  262. Solomiichuk V, Fleischhammer J, Molliqaj G, Warda J, Alaid A, von Eckarstein K, et al. Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison. Neurosurg Focus. 2017;42(5):E13.

    Article  PubMed  Google Scholar 

  263. Hu X, Scharschmidt TJ, Ohnmeiss DD, Lieberman IH. Robotic assisted surgeries for the treatment of spine tumors. Int J Spine Surg. 2015;9:1.

    Article  CAS  PubMed Central  Google Scholar 

  264. Georgy BA. Metastatic spinal lesions: state-of-the-art treatment options and future trends. AJNR Am J Neuroradiol. 2008;29(9):1605–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zuckerman SL, Laufer I, Sahgal A, Yamada Y, Schmidt MH, Chou D, et al. When less is more: the indications for MIS techniques and separation surgery in metastatic spine disease. Spine (Phila Pa 1976). 2016;41(20S):S253.

    Google Scholar 

  266. Afathi M, Peltier E, Adetchessi T, Graillon T, Dufour H, Fuentes S. Minimally invasive transmuscular approach for the treatment of benign intradural extramedullary spinal cord tumours: technical note and results. Neurochirurgie. 2015;61(5):333–8.

    Article  CAS  PubMed  Google Scholar 

  267. Banczerowski P, Veres R, Vajda J. Modified minimally invasive surgical approach to cervical neuromas with intraforaminal components: hemi-semi-laminectomy and supraforaminal burr hole (modified foraminotomy) technique. Minim Invasive Neurosurg. 2009;52(1):56–8.

    Article  CAS  PubMed  Google Scholar 

  268. Dahlberg D, Halvorsen CM, Lied B, Helseth E. Minimally invasive microsurgical resection of primary, intradural spinal tumours using a tubular retraction system. Br J Neurosurg. 2012;26(4):472–5.

    Article  PubMed  Google Scholar 

  269. Fontes RBV, Wewel JT, O’Toole JE. Perioperative cost analysis of minimally invasive vs open resection of intradural extramedullary spinal cord tumors. Neurosurgery. 2016;78(4):531–9.

    Article  PubMed  Google Scholar 

  270. Gandhi RH, German JW. Minimally invasive approach for the treatment of intradural spinal pathology. Neurosurg Focus. 2013;35(2):E5.

    Article  PubMed  Google Scholar 

  271. Haji F, Cenic A, Crevier L, Murty N, Reddy K. Minimally invasive approach for the resection of spinal neoplasm. Spine (Phila Pa 1976). 2011;36(15):E1026.

    Article  Google Scholar 

  272. Mannion RJ, Nowitzke AM, Efendy J, Wood MJ. Safety and efficacy of intradural extramedullary spinal tumor removal using a minimally invasive approach. Oper Neurosurg (Hagerstown). 2011;68(1):ONS216.

    Google Scholar 

  273. Nzokou A, Weil AG, Shedid D. Minimally invasive removal of thoracic and lumbar spinal tumors using a nonexpandable tubular ret. J Neurosurg Spine. 2013;19(9):708–15.

    Article  PubMed  Google Scholar 

  274. Tan LA, Takagi I, Straus D, O’Toole JE. Management of intended durotomy in minimally invasive intradural spine surgery. J Neurosurg Spine. 2014;21(2):279–85.

    Article  PubMed  Google Scholar 

  275. Tredway TL, Santiago P, Hrubes MR, Song JK, Christie SD, Fessler RG. Minimally invasive resection of intradural-extramedullary spinal neoplasms. Oper Neurosurg (Hagerstown). 2006;58(S1):ONS58.

    Google Scholar 

  276. Uribe JS, Dakwar E, Le TV, Christian G, Serrano S, Smith WD. Minimally invasive surgery treatment for thoracic spine tumor removal: a mini-open, lateral approac. Spine (Phila Pa 1976). 2010;35(26S):S354.

    Google Scholar 

  277. Yu Y, Zhang X, Hu F, Xie T, Gu Y. Minimally invasive microsurgical treatment of cervical intraspinal extramedullary tumors. J Clin Neurosci. 2011;18(9):1168–73.

    Article  PubMed  Google Scholar 

  278. Zairi F, Nzokou A, Sunna T, Obaid S, Weil AG, Bojanowski M, et al. Minimally invasive costotransversectomy for the resection of large thoracic dumbbell tumors. Br J Neurosurg. 2017;31(2):179–83.

    Article  PubMed  Google Scholar 

  279. Zhu Y, Ying G, Chen A, Wang L, Yu D, Zhu L, et al. Minimally invasive removal of lumbar intradural extramedullary lesions using the interlaminar approach. Neurosurg Focus. 2015;39(2):E10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Sciubba .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

  1. 1.

    What are the most common types of spinal neoplasms?

  2. 2.

    What are the objectives for the treatment of spinal metastases?

  3. 3.

    What tumor sizes and types can reasonably be treated with minimally invasive techniques?

  4. 4.

    Which are the relative merits of an anterior vs. posterior minimally invasive approach, such as video-assisted thoracoscopy vs. a posterior mini-open approach?

Answers

  1. 1.

    Vertebral column metastases

  2. 2.

    Palliation of patient symptoms. For patients with expected survival times exceeding 3–6 months, surgery should be offered for relief of mechanical pain localizable to metastatic disease or pain and/or neurological dysfunction secondary to neural element decompression. For patients with more limited survival, surgery – especially if done via a minimally invasive approach – is reasonable for relief of neural element compression and may be considered for those with severe tumor-related mechanical pain.

  3. 3.

    For vertebral column lesions, minimally invasive techniques are reasonably entertained where en bloc resection is not required (e.g., metastatic lesions), and the lesion is isolated to a single vertebral body. Geometric concerns mean that lesions involving more than one consecutive vertebra and those requiring en bloc resection should be approached with open approaches. For lesions of the spinal cord and meninges, minimally invasive approaches are reasonably entertained for lesions involving fewer than two levels. Ventrally located lesions and those extending more than two levels likely benefit from an open approach.

  4. 4.

    Relative merits of the minimally invasive approaches are shorter hospital lengths of stay, lower blood loss, and lower complication rates. Minimally invasive approaches also likely decrease muscle damage, postoperative pain, and rates of surgical site infection, though evidence for these outcomes is best supported in the non-oncology literature.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pennington, Z., Molina, C.A., Sciubba, D.M. (2019). Minimally Invasive Surgery for Spinal Tumors. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics