Skip to main content

Energy-Harvesting Applications and Efficient Power Processing

  • Chapter
  • First Online:
NANO-CHIPS 2030

Abstract

In comparison to the original chapter in CHIPS 2020 vol. 2—New Vistas in Nanoelectronics (Chap. 19: Hehn et al., “Energy Harvesting Applications and Efficient Power Processing”, pp. 275–300), this chapter presents some significant evolution with regard to the applications and the circuit components. New aspects are swing-motion energy and self-adaptive tuning devices useful in wearable and condition monitoring applications. Moreover, innovations with regard to digital ultra-low-voltage and ultra-low-power circuits for thermoelectric energy harvesting are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Leonov, Thermoelectric energy harvester on the heated human machine. J. Micromech. Microeng. 21(12), 125013 (2011)

    Article  ADS  Google Scholar 

  2. M.-K. Kim, M.-S. Kim, S. Lee, C. Kim, Y.-J. Kim, Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 23(10), 105002 (2014)

    Article  ADS  Google Scholar 

  3. J.M. Donelan et al., Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319(5864), 807–810, 18258914 (2008)

    Google Scholar 

  4. Q. Li, V. Naing, J.M. Donelan, Development of a biomechanical energy harvester. J. Neuroeng. Rehabil. 6, 22, 19549313 (2009)

    Google Scholar 

  5. Z. Yang, A. Khaligh, A flat linear generator with axial magnetized permanent magnets with reduced accelerative force for backpack energy harvesting

    Google Scholar 

  6. Q. Zhang, Y. Wang, E.S. Kim, Power generation from human body motion through magnet and coil arrays with magnetic spring. J. Appl. Phys. 115(6), 064908 (2014)

    Article  ADS  Google Scholar 

  7. K. Ylli, D. Hoffmann, A. Willmann, B. Folkmer, Y. Manoli, Investigation of pendulu structures for rotational energy harvesting from human motion. J. Phys.: Conf. Ser. 660, 012053 (2015)

    Google Scholar 

  8. P. Niu, P. Chapman, R. Riemer, X. Zhang, Evaluation of motions and actuation methods for biomechanical energy harvesting, in 2004 IEEE 35th Annual Power Electronics Specialists Conference, PESC 04 (2004), pp. 2100–2106

    Google Scholar 

  9. K. Ylli, D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, Y. Manoli, Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater. Struct. 24, 025029 (2015)

    Article  ADS  Google Scholar 

  10. D. Hoffmann, B. Folkmer, Y. Manoli, Human motion energy harvester for biometric data monitoring. J. Phys.: Conf. Ser. 476, 012103 (2013)

    Google Scholar 

  11. D. Carroll, M. Duffy, Modelling, design, and testing of an electromagnetic power generator optimized for integration into shoes. Proc. Inst. Mech. Eng., Part I: J. Syst. Control. Eng. 226(2), 256–270 (2012)

    Google Scholar 

  12. K. Ylli, D. Hoffmann, A. Willmann, B. Folkmer, Y. Manoli, Human motion energy harvesting: numerical analysis of electromagnetic swing-excited structures. Smart Mater. Struct. 25, 095014 (2016)

    Article  ADS  Google Scholar 

  13. J.-X. Shen et al., A shoe-equipped linear generator for energy harvesting. IEEE Trans. Ind. Appl. 49(2), 990–996 (2013)

    Article  Google Scholar 

  14. K. Ylli, Energy harvesting from the swing motion of the human leg, Ph.D dissertation, Albert-Ludwigs-Universität Freiburg, 2019. Accessed 28 March 2020. [Online]. Available: https://freidok.uni-freiburg.de/data/17369, https://doi.org/10.6094/UNIFR/17369

  15. P. Mitcheson, E. Yeatman, G.K. Rao, A. Holmes, T. Green, Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486 (2008)

    Article  Google Scholar 

  16. S. Roundy, E.S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J.M. Rabaey, V. Sundararajan, P.K. Wright, Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4(1), 28–36 (2005)

    Article  Google Scholar 

  17. A. Zahid Kausar, A.W. Reza, M.U. Saleh, H. Ramiah, Energizing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew. Sustain. Energy Rev. 38, 973–989 (2014)

    Google Scholar 

  18. I.N. Ayala-Garcia, D. Zhu, M.J. Tudor, S.P. Beeby, A tunable kinetic energy harvester with dynamic over range protection. Smart Mater. Struct. 19(11) (2010)

    Google Scholar 

  19. N.A. Aboulfotoh, M.H. Arafa, S.M. Megahed, A self-tuning resonator for vibration energy harvesting. Sens. Actuators, A 201, 328–334 (2013)

    Article  Google Scholar 

  20. D. Hoffmann, A. Willmann, B. Folkmer, Y. Manoli, Tunable vibration energy harvester for condition monitoring of maritime gearboxes. J. Phys.: Conf. Ser 557 (2014)

    Google Scholar 

  21. V.R. Challa, M.G. Prasad, F.T. Fisher, Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications. Smart Mater. Struct. 20(2), 025004 (2011)

    Article  ADS  Google Scholar 

  22. C. Eichhorn, R. Tchagsim, N. Wilhelm, P. Woias, A smart and self-sufficient frequency tunable vibration energy harvester. J. Micromech. Microeng. 21(10) (2011)

    Google Scholar 

  23. B.-C. Lee, G.-S. Chung, Frequency tuning design for vibration-driven electromagnetic energy harvester. IET Renew. Power Gener. 9(7), 801–808 (2015)

    Article  Google Scholar 

  24. S.-C. Huang, K.-A. Lin, A novel design of a map-tuning piezoelectric vibration energy harvester. Smart Mater. Struct. 21(8), 085014 (2012)

    Article  ADS  Google Scholar 

  25. J. Esch, D. Hoffmann, D. Stojakov, Y. Manoli, Self-tunable vibration energy harvester, in Proceedings of PowerMEMS 2018, Daytona Beach, USA (2018)

    Google Scholar 

  26. D. Hoffmann, A. Willmann, T. Hehn, B. Folkmer, Y. Manoli, A self-adaptive energy harvesting system. Smart Mater. Struct. 25(3), 035013 (2016)

    Article  ADS  Google Scholar 

  27. J. Esch, K. Ylli, D. Stojakov, A. Willmann, D. Hoffmann, Y. Manoli, Energy harvesting flex-coil system for pneumatic pistons, in Proceedings of PowerMEMS 2017, Kanazava, Japan, Journal of Physics: Conference Series, vol. 1052 (2018)

    Google Scholar 

  28. D. Hoffmann, A. Willmann, B. Folkmer, Y. Manoli, Energy harvesting for high-speed sensor telemetry, in PowerMEMS (2012)

    Google Scholar 

  29. D. Hoffmann et al., Tunable vibration energy harvester for condition monitoring of maritime gearboxes. J. Phys.: Conf. Ser. 557(1), 012099 (2014)

    Google Scholar 

  30. J. Wang, G. Penamalli, L. Zuo, Electromagnetic energy harvesting from train induced railway track vibrations, in 2012 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), July 2012

    Google Scholar 

  31. J. Leicht, M. Amayreh, C. Moranz, D. Maurath, T. Hehn, Y. Marioli, Electromagnetic vibration energy harvester interface IC with conduction angle-controlled maximum-power-point tracking and harvesting efficiencies of up to 90%, in International Solid State Circuits, Feb 2015, pp. 1–3

    Google Scholar 

  32. Y. Ramadass, A. Chandrakasan, An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid-State Circuits 45(1), 189–204 (2010)

    Article  ADS  Google Scholar 

  33. D. Kwon, G. Rincon-Mora, A single-inductor 0.35 mm cmos energy-investing piezoelectric harvester. IEEE J. Solid-State Circuits 49(10), 2277–2291 (2014)

    Article  ADS  Google Scholar 

  34. S. Stanzione, C. van Liempd, M. Nabeto, F.R. Yazicioglu, C.V. Hoof, A 500 nW batteryless integrated electrostatic energy harvester interface based on a DC-DC converter with 60 V maximum input voltage and operating from 1 mW available power, including MPPT and cold start, in 2015 IEEE International Solid-State Circuits Conference—(ISSCC), Feb 2015, pp. 1–3

    Google Scholar 

  35. Y. Manoli, Energy harvesting—from devices to systems, in 2010 Proceedings of the ESSCIRC, Sept 2010, pp. 27–36

    Google Scholar 

  36. S. Roundy, P.K. Wright, A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13(5), 1131 (2004)

    Article  ADS  Google Scholar 

  37. G. Gautschi, Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers (Springer, Berlin, 2002)

    Book  Google Scholar 

  38. T. Hehn et al., A fully autonomous integrated interface circuit for piezoelectric harvesters. IEEE JSSC 47(9), 2185–2198 (2012)

    ADS  Google Scholar 

  39. A. Frey, J. Seidel, M. Schreiter, I. Kuehne, Piezoelectric MEMS energy harvesting module based on non-resonant excitation, in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), June 2011, pp. 683–686

    Google Scholar 

  40. D.A. Sanchez, J. Leicht, E. Jodka, E. Fazel, Y. Manoli, A parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations. J. Solid State Circuits 51(12), 2867–2879 (2016)

    Article  ADS  Google Scholar 

  41. M. Shim, J. Kim, J. Jeong, S. Park, C. Kim, Self-powered 30 μW to 10 mW piezoelectric energy harvesting system with 9.09 ms/V maximum power point tracking time. IEEE J. Solid-State Circuits 50(10), 2367–2379 (2015)

    Article  ADS  Google Scholar 

  42. Y. Cai, Y. Manoli, A piezoelectric energy-harvesting interface circuit with fully autonomous conjugate matching, 156% extended bandwidth, and 0.38 µW power consumption, ISSCC 2018 paper

    Google Scholar 

  43. Y. Cai, Y. Manoli, A piezoelectric energy-harvesting interface circuit with fully autonomous conjugate matching, 156% extended bandwidth, and 0.38 µW power consumption, ISSCC 2018 visuals

    Google Scholar 

  44. Y. Cai, Y. Manoli, A piezoelectric energy harvester interface circuit with adaptive conjugate impedance matching, self-startup and 71% broader bandwidth, ESSCIRC 2017

    Google Scholar 

  45. D. Sanchez et al., A 4 µW-to-1 mW parallel-SSHI-rectifier with inductor sharing, cold start-up and up to 681% power extraction improvement, ISSCC, Feb 2016, pp. 366–367

    Google Scholar 

  46. P. Hsieh et al., Improving the scavenged power of nonlinear piezoelectric energy harvesting interface at off-resonance by introducing switching delay. IEEE Trans. Power Electron. 30(6), 3142–3155 (2015)

    Article  ADS  Google Scholar 

  47. Y. Peng et al., An efficient piezoelectric energy harvesting interface circuit using a sense-and-set rectifier. IEEE J. Solid-State Circuits. https://doi.org/10.1109/jssc.2019.2945262

  48. D.A. Sanchez, J. Leicht, F. Hagedorn, E. Jodka, E. Fazel, Y. Manoli, A parallel-SSHI rectifier for piezoelectric energy harvesting of periodic and shock excitations. IEEE J. Solid-State Circuits 51(12), 2867–2879 (2016). https://doi.org/10.1109/jssc.2016.2615008

  49. Y. Yuk et al., 23.5 An energy pile-up resonance circuit extracting maximum 422% energy from piezoelectric material in a dual-source energy-harvesting interface, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 402–403. https://doi.org/10.1109/isscc.2014.6757488

  50. A. Quelen, A. Morel, P. Gasnier, R. Grézaud, S. Monfray, G. Pillonnet, A 30 nA quiescent 80 nW-to-14 mW power-range shock-optimized SECE-based piezoelectric harvesting interface with 420% harvested-energy improvement, in 2018 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, 2018, pp. 150–152. https://doi.org/10.1109/isscc.2018.8310228

  51. J. Colonna, G. Savelli, A. Royer, P. Coudrain, M. Keller, D. Wendler, Y. Manoli, L. Fréchette, L.-M. Collin, S. Billat, J. Barrau, H2020 European project STREAMS: general overview, in 24th International Workshop on Thermal Investigations of ICs and Systems, Stockholm, 2018

    Google Scholar 

  52. V. Leonov, Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens. J. 13(6), 2284–2291 (2013)

    Article  ADS  Google Scholar 

  53. J. Goeppert, S. Braun, D. Pellhammer, M. Amayreh, J. Leicht, M. Keller, Y. Manoli, Area constrained multi-source power management for thermoelectric energy harvesting, in Proceedings of the European Solid-State Circuits Conference, Krakow, 2019

    Google Scholar 

  54. A. Camarda, A. Romani, E. Macrelli, M. Tartagni, A 32 mV/69 mV input voltage booster based on a piezoelectric transformer for energy harvesting applications. Sens. Actuators A: Phys. 341–352 (2015)

    Google Scholar 

  55. J. Goeppert, Y. Manoli, Fully integrated startup at 70 mV of boost converters for thermoelectric energy harvesting. IEEE J. Solid-State Circuits 7, 1716–1726 (2016)

    Article  ADS  Google Scholar 

  56. P.-H. Chen, X. Zhang, K. Ishida, Y. Okuma, Y. Ryu, M. Takamiya, T. Sakurai, An 80 mV startup dual-mode boost converter by charge-pumped pulse generator and threshold voltage tuned oscillator with hot carrier injection. IEEE J. Solid-State Circuits 11(47), 2554–2562 (2012)

    Article  ADS  Google Scholar 

  57. P.-S. Weng, H.-Y. Tang, P.-C. Ku, L.-H. Lu, 50 mV-input batteryless boost converter for thermal energy harvesting. IEEE J. Solid-State Circuits 48(4), 1031–1041 (2013)

    Article  ADS  Google Scholar 

  58. Y.K. Ramadass, A.P. Chandrakasan, A batteryless thermoelectric energy-harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid-State Circuits 46(1), 333–341 (2011)

    Article  ADS  Google Scholar 

  59. J. Goeppert, Y. Manoli, Fully integrated start-up at 70 mV of boost converters for thermoelectric energy harvesting, in ESSCIRC Conference 2015—41st European Solid-State Circuits Conference (ESSCIRC), Graz, 2015, pp. 233–236

    Google Scholar 

  60. Y. Shi, Y. Wang, D. Mei, Z. Chen, Wearable thermoelectric generator with copper foam as the heat sink for body heat harvesting. IEEE Access 6, 43602–43611 (2018)

    Article  Google Scholar 

  61. D. Jacquet et al., A 3 GHz dual core processor ARM cortex TM -A9 in 28 nm UTBB FD-SOI CMOS with ultra-wide voltage range and energy efficiency optimization. IEEE J. Solid-State Circuits 49(4), 812–826 (2014)

    Article  ADS  Google Scholar 

  62. M. Hwang, Supply-voltage scaling close to the fundamental limit under process variations in nanometer technologies. IEEE Trans. Electron Devices 58(8), 2808–2813 (2011)

    Article  ADS  Google Scholar 

  63. T. Kim, J. Liu, C.H. Kim, A voltage scalable 0.26 V, 64 kb 8T SRAM with Vmin lowering techniques and deep sleep mode. IEEE J. Solid-State Circuits 44(6), 1785–1795 (2009)

    Article  ADS  Google Scholar 

  64. N. Planes et al., 28 nm FDSOI technology platform for high-speed low-voltage digital applications, in 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, 2012, pp. 133–134

    Google Scholar 

  65. A. Bleitner, J. Goeppert, N. Lotze, M. Keller, Y. Manoli, Comparison and optimization of the minimum supply voltage of Schmitt Trigger gates versus CMOS gates under process variations, in ANALOG 2018, 16th GMM/ITG-Symposium, Munich/Neubiberg, Germany, Sept 2018, pp. 111–116

    Google Scholar 

  66. N. Lotze, Y. Manoli, A 62 mV 0.13 μm CMOS standard-cell-based design technique using Schmitt-Trigger logic. IEEE J. Solid-State Circuits 47(1), 47–60 (2012)

    Article  ADS  Google Scholar 

  67. N. Lotze, Y. Manoli, Ultra-sub-threshold operation of always-on digital circuits for IoT applications by use of Schmitt Trigger gates. IEEE Trans. Circuits Syst. I Regul. Pap. 64(11), 2920–2933 (2017)

    Article  MathSciNet  Google Scholar 

  68. L.A. Pasini Melek, M.C. Schneider, C. Galup-Montoro, Operation of the classical CMOS Schmitt Trigger as an ultra-low-voltage amplifier. IEEE TCAS II 65(9), 1239–1243 (2018)

    Google Scholar 

  69. F.M. Yaul, A.P. Chandrakasan, A noise-efficient 36 nV/\(\surd\) Hz chopper amplifier using an inverter-based 0.2-V supply input stage. IEEE J. Solid-State Circuits 52(11), 3032–3042 (2017)

    Google Scholar 

  70. S. Orguc, H.S. Khurana, H. Lee, A.P. Chandrakasan, 0.3 V ultra-low power sensor interface for EMG, in ESSCIRC 2017—43rd IEEE European Solid State Circuits Conference, Leuven, 2017, pp. 219–222

    Google Scholar 

  71. T. Haine, D. Flandre, D. Bol, 8-T ULV SRAM macro in 28 nm FDSOI with 7.4 pW/bit retention power and back-biased-scalable speed/energy trade-off, in 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Burlingame, CA, USA, 2018, pp. 1–3

    Google Scholar 

  72. A.P. Shah, N. Yadav, A. Beohar, S.K. Vishvakarma, On-chip adaptive body bias for reducing the impact of NBTI on 6T SRAM cells. IEEE Trans. Semicond. Manuf. 31(2), 242–249 (2018)

    Article  Google Scholar 

  73. J. Le Coz, B. Pelloux-Prayer, B. Giraud, F. Giner, P. Flatresse, DTMOS power switch in 28 nm UTBB FD-SOI technology, in 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Monterey, CA, 2013, pp. 1–2

    Google Scholar 

  74. E. Ashenafi, M.H. Chowdhury, A new power gating circuit design approach using double-gate FDSOI. IEEE Trans. Circuits Syst. II Express Briefs 65(8), 1074–1078 (2018)

    Article  Google Scholar 

  75. M.U. Mohammed, A. Nizam, M.H. Chowdhury, Double-gate FDSOI based SRAM Bitcell circuit designs with different back-gate biasing configurations, in 2018 IEEE Nanotechnology Symposium (ANTS), Albany, NY, USA, 2018, pp. 1–4

    Google Scholar 

  76. A. Biswas, A.P. Chandrakasan, A 0.36 V 128 Kb 6T SRAM with energy-efficient dynamic body-biasing and output data prediction in 28 nm FDSOI, in ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, 2016, pp. 433–436

    Google Scholar 

  77. H. Okuhara, A.B. Ahmed, H. Amano, Digitally assisted on-chip body bias tuning scheme for ultra low-power VLSI systems. IEEE Trans. Circuits Syst. I Regul. Pap. 65(10), 3241–3254 (2018)

    Article  Google Scholar 

  78. M.-E. Hwang, K. Roy, A 135 mV 0.13 μW process tolerant 6T sub-threshold DTMOS SRAM in 90 nm technology, in 2008 IEEE Custom Integrated Circuits Conference, Sept 2008, pp. 419–422

    Google Scholar 

  79. S. Jayapal, J. Stuijt, J. Huisken, Y. Manoli, Energy efficient computation with self-adaptive single-ended body bias, in 23rd IEEE International SOC Conference, Las Vegas, NV, 2010, pp. 326–329

    Google Scholar 

  80. H. Koike, T. Sekigawa, The missing XDXMOS found!—A SOTB circuit acceleration technique using front and back gate interaction, in 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Rohnert Park, CA, 2015, pp. 1–2

    Google Scholar 

  81. M. Pons et al., A 0.5 V 2.5 μW/MHz microcontroller with analog-assisted adaptive body bias PVT compensation with 3.13 nW/kB SRAM retention in 55 nm deeply-depleted channel CMOS, in 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2019, pp. 1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hehn, T. et al. (2020). Energy-Harvesting Applications and Efficient Power Processing. In: Murmann, B., Hoefflinger, B. (eds) NANO-CHIPS 2030. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-18338-7_23

Download citation

Publish with us

Policies and ethics