Skip to main content

Additive Manufacturing: New Trends in the 4th Industrial Revolution

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing (AMP 2019)

Abstract

Among the enabling technologies of the fourth industrial revolution, additive manufacturing (AM) is considered as a key factor for the success of the new production paradigm.

In this paper, the role of the AM technologies in the new scenery will be pointed out, focusing the attention on those factors enacting its success and its widespread diffusion among the most important companies of the main industrial sectors. These factors are mainly attributable to new materials of every kind, from polymers to metals passing from the composites, as well as, new processes, which open the possibility to reach new markets. The most relevant innovations will be reported, especially those related to the industrial implementation of AM. The issues related to the metrology of the additive manufacturing products and the sustainability of these manufacturing processes will be also described highlighting the main criticalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pereira, A.C., Romero, F.: A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 13, 1206–1214 (2017). https://doi.org/10.1016/j.promfg.2017.09.032

    Article  Google Scholar 

  2. Hosseini, M.: What will the future look like under Industry 4.0 and digital transformation in the healthcare space ? (2015). https://www.rolandberger.com/publications/publication_pdf/roland_berger_digital_transformation_in_healthcare_20150421.pdf. Accessed 25 Jan 2019

  3. Galantucci, L.M., Lavecchia, F.: Direct digital manufacturing of ABS parts: an experimental study on effectiveness of proprietary software for shrinkage compensation. Int. J. Digit. Content Technol. Its Appl. 6, 546–555 (2012). https://doi.org/10.4156/jdcta.vol6.issue19.66

    Article  Google Scholar 

  4. Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R.I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B., Martina, F.: Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. - Manuf. Technol. 65, 737–760 (2016). https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  5. Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 8, 215–243 (2013). https://doi.org/10.1007/s11465-013-0248-8

    Article  Google Scholar 

  6. Wong, K.V., Hernandez, A.: A review of additive manufacturing. ISRN Mech. Eng. 2012, 1–10 (2012). https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  7. Michaels, D.: Europe Leads as Industrial 3-D Printing Takes Shape (2018). https://www.wsj.com/articles/europe-leads-as-industrial-3-d-printing-takes-shape-1493976603. Accessed 23 Jan 2019

  8. McCue, T.J.: Wohlers Report 2018: 3D Printer Industry Tops $7 Billion (2018). https://www.forbes.com/sites/tjmccue/2018/06/04/wohlers-report-2018-3d-printer-industry-rises-21-percent-to-over-7-billion/#2aca53b2d1a4. Accessed 23 Jan 2019

  9. Goldense, B.L.: Metal AM: Metal Additive Manufacturing Hits Critical Mass (2018). https://www.machinedesign.com/3d-printing/metal-am-metal-additive-manufacturing-hits-critical-mass. Accessed 22 Jan 2019

  10. McCue, T.J.: On Growth Path With Almost $3 Billion In Revenue (2018). https://www.forbes.com/sites/tjmccue/2018/08/30/3d-printing-service-bureaus-on-growth-path-with-almost-3-billion-in-revenue/#24fdad2d8d59. Accessed 23 Jan 2019

  11. Bourell, D., Pierre, J., Leu, M., Levy, G., Rosen, D., Beese, A.M., Clare, A.: Materials for additive manufacturing. CIRP Ann. - Manuf. Technol. 66, 659–681 (2017). https://doi.org/10.1016/j.cirp.2017.05.009

    Article  Google Scholar 

  12. ISO/ASTM Standard 5290, Standard Terminology for Additive Manufacturing – General Principles – Part 1: Terminology (2015)

    Google Scholar 

  13. Desimone, I.J.M., Hill, C., Ermoshkin, A., Us, N.C., Samulski, E.T., Hill, C., Us, N.C., Lawton, A., Examiner, P., Del, J.S.: (12) United States Patent, 2 (2016)

    Google Scholar 

  14. Stansbury, J.W., Idacavage, M.J.: 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 32, 54–64 (2016). https://doi.org/10.1016/j.dental.2015.09.018

    Article  Google Scholar 

  15. Do, A.V., Khorsand, B., Geary, S.M., Salem, A.K.: 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 4, 1742–1762 (2015). https://doi.org/10.1002/adhm.201500168

    Article  Google Scholar 

  16. Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Chen, K., Pinschmidt, R., Rolland, J.P., Ermoshkin, A., Samulski, E.T., Desimone, J.M.: Additive manufacturing. Continuous liquid interface production of 3D objects. Sicence 347, 1349–1352 (2015). https://doi.org/10.1126/science.aaa2397

  17. Carbon, Continuous Liquid Interface Production (CLIP) process (2019). https://www.carbon3d.com/. Accessed 22 Jan 2019

  18. Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R.: Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017). https://doi.org/10.1021/acs.chemrev.7b00074

    Article  Google Scholar 

  19. Miller, A.T., Safranski, D.L., Wood, C., Guldberg, R.E., Gall, K.: Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. J. Mech. Behav. Biomed. Mater. 75, 1–13 (2017). https://doi.org/10.1016/j.jmbbm.2017.06.038

    Article  Google Scholar 

  20. Wang, F., Wang, F.: Liquid resins-based additive manufacturing. J. Mol. Eng. Mater. 5(05), 1740004 (2017). https://doi.org/10.1142/S2251237317400044

    Article  Google Scholar 

  21. de Beer, M.P., van der Laan, H.L., Cole, M.A., Whelan, R.J., Burns, M.A., Scott, T.F.: Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv. 5, eaau8723 (2019). https://doi.org/10.1126/sciadv.aau8723

  22. HP Jet Fusion 3D Printing Solution. Reinventing prototyping and manufacturing, Hewlett-Packard Development Company (2016). http://www8.hp.com/us/en/pdf/printers/3d-printers/4AA6-4892ENA-P.pdf. Accessed 10 Oct 2017

  23. HP, HP METAL JET (2019). https://www8.hp.com/us/en/printers/3d-printers/metals.html. Accessed 22 Jan 2019

  24. Thomas, H.R., Hopkinson, N., Erasenthiran, P.: High speed sintering – continuing research into a new rapid manufacturing process. In: Proceedings of 17th Solid Freedom Fabrication Symposium, pp. 682–691 (2006). http://sffsymposium.engr.utexas.edu/2006TOC%0Ahttp://sffsymposium.engr.utexas.edu/Manuscripts/2006/2006-59-Thomas.pdf

  25. Hopkinson, N., Dickens, P.: Analysis of rapid manufacturing - using layer manufacturing processes for production. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2003). https://doi.org/10.1243/095440603762554596

  26. Bennett, M.R.: High Speed Sintering, Loughborough University (2019). https://www.highspeedsinteringtechnology.com/about/. Accessed 23 Jan 2019

  27. 3D System, DMP Factory 500 (2019). https://www.3dsystems.com/3d-printers/dmp-factory-500. Accessed 22 Jan 2019

  28. Skulan, D.: Practical guidance from design to production. 25 Years Automot. Part Supplied Conf. - Precis. Met. Assoc. (2018). https://www.pma.org/apsc/assets/presentations/Skulan.pdf. Accessed 26 Jan 2019

  29. Renishaw, RenAM 500Q (2017). https://www.renishaw.com/en/renam-500q--42781. Accessed 23 Jan 2019

  30. Stratasys, FORTUS 380MC Carbon Fiber Edition (2018). https://www.stratasys.com/3d-printers/fortus-380-carbon-fiber-edition. Accessed 22 Jan 2019

  31. Mark, G.: A Revolutionary New Way to Manufacture Metal Parts (2017). https://markforged.com/blog/adam/. Accessed 23 Jan 2019

  32. Markforged, Metal X (2017). https://markforged.com/metal-x/. Accessed 22 Jan 2019

  33. Markforged, The world’s strongest 3D printing materials (2019). https://markforged.com/materials/. Accessed 6 Jan 2019

  34. Scott, C.: Roboze Unveils the New ARGO 500 3D Printer at formnext (2017). https://3dprint.com/194165/roboze-argo-500-3d-printer/. Accessed 23 Jan 2019

  35. Roboze, Technology Engineering and research serving worldwide manufacturing (2019). https://www.roboze.com/en/technology.html. Accessed 22 Jan 2019

  36. Cicala, G., Pergolizzi, E., Piscopo, F., Carbone, D., Recca, G.: Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin. Compos. Part B Eng. 132, 69–76 (2018). https://doi.org/10.1016/j.compositesb.2017.08.015

    Article  Google Scholar 

  37. Cicala, G., Latteri, A., Del Curto, B., Lo Russo, A., Recca, G., Farè, S.: Engineering thermoplastics for additive manufacturing: a critical perspective with experimental evidence to support functional applications. J. Appl. Biomater. Funct. Mater. 15, 10–18 (2017). https://doi.org/10.5301/jabfm.5000343

    Article  Google Scholar 

  38. Jeanmonod, D.J., Rebecca, K., et al.: Suzuki, We are IntechOpen, the world’ s leading publisher of Open Access books Built by scientists, for scientists TOP 1% Control of a Proportional Hydraulic System. Intech Open. 2, 64 (2018). https://doi.org/10.5772/32009

  39. Regina, F., Lavecchia, F., Galantucci, L.M.: Preliminary study for a full colour low cost open source 3D printer, based on the combination of fused deposition modelling (FDM) or fused filament fabrication (FFF) and inkjet printing. Int. J. Interact. Des. Manuf. 12, 979–993 (2018). https://doi.org/10.1007/s12008-017-0432-x

    Article  Google Scholar 

  40. Galantucci, L.M., Percoco, G., Spina, R.: Evaluation of rapid prototypes obtained from reverse engineering. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 217, 1543–1552 (2003)

    Google Scholar 

  41. Li, L., Li, C., Tang, Y., Du, Y.: An integrated approach of reverse engineering aided remanufacturing process for worn components. Robot. Comput. Integr. Manuf. 48, 39–50 (2017). https://doi.org/10.1016/j.rcim.2017.02.004

    Article  Google Scholar 

  42. Wilson, J.M., Piya, C., Shin, Y.C., Zhao, F., Ramani, K.: Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J. Clean. Prod. 80, 170–178 (2014). https://doi.org/10.1016/j.jclepro.2014.05.084

    Article  Google Scholar 

  43. Gao, J., Chen, X., Yilmaz, O., Gindy, N.: An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int. J. Adv. Manuf. Technol. 36, 1170–1179 (2008). https://doi.org/10.1007/s00170-006-0923-6

    Article  Google Scholar 

  44. Xue, L., Donovan, M., Li, Y., Chen, J., Wang, S., Campbell, G.: Integrated rapid 3D mapping and laser additive repair of gas turbine engine components. In: 32nd International Congress on Applications of Lasers & Electro-Optics, ICALEO 2013, pp. 318–325 (2013)

    Google Scholar 

  45. Heralić, A., Christiansson, A.K., Lennartson, B.: Height control of laser metal-wire deposition based on iterative learning control and 3D scanning. Opt. Lasers Eng. 50, 1230–1241 (2012). https://doi.org/10.1016/j.optlaseng.2012.03.016

    Article  Google Scholar 

  46. Yilmaz, O., Gindy, N., Gao, J.: A repair and overhaul methodology for aeroengine components. Robot. Comput. Integr. Manuf. 26, 190–201 (2010). https://doi.org/10.1016/j.rcim.2009.07.001

    Article  Google Scholar 

  47. Bovalino, Y.M.: ADDITIVE MANUFACTURING Secret Weapon: This Supersonic Blaster Rebuilds Jet Parts With Flying Powder (2017). https://www.ge.com/reports/secret-weapon-supersonic-blaster-rebuilds-jet-parts-flying-powder/. Accessed 23 Jan 2019

  48. Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T.: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. JMADE 95, 431–445 (2016). https://doi.org/10.1016/j.matdes.2016.01.099

    Article  Google Scholar 

  49. Galantucci, L.M., Guerra, M.G., Lavecchia, F.: Photogrammetry applied to small and micro scaled objects: a review (2018). https://doi.org/10.1007/978-3-319-89563-5_4

  50. Lavecchia, F., Guerra, M.G., Galantucci, L.M.: Performance verification of a photogrammetric scanning system for micro-parts using a three-dimensional artifact: adjustment and calibration. Int. J. Adv. Manuf. Technol. (2018). https://doi.org/10.1007/s00170-018-1806-3

  51. Wilm, J., Madruga, D.G., Jensen, J.N., Gregersen, S.S., Doest, M.E.B., Guerra, M.G., Aanæs, H., De Chiffre, L.: Effects of subsurface scattering on the accuracy of optical 3D measurements using miniature polymer step gauges. In: European Society for Precision Engineering and Nanotechnology, Conference and Proceedings - 18th International Conference and Exhibition on EUSPEN 2018, European Society for Precision Engineering and Nanotechnology, Venice, pp. 449–450 (2018). http://orbit.dtu.dk/en/publications/effects-of-subsurface-scattering-on-the-accuracy-of-optical-3d-measurements-using-miniature-polymer-step-gauges(4ec1fe50-e7eb-44ef-8def-6beda94b4d02).html

  52. Guerra, M.G., Volpone, C., Galantucci, L.M., Percoco, G.: Photogrammetric measurements of 3D printed microfluidic devices. Addit. Manuf. 21 (2018). https://doi.org/10.1016/j.addma.2018.02.013

  53. Cerardi, A., Meneghello, R., Concheri, G., Savio, G.: Form errors estimation in free-form 2D and 3D geometries. In: Proceedings of International Conference on Innovative Methods in Product Design, Venice, 15th–17th June, no. I (2011). https://www.researchgate.net/publication/232957835_Form_errors_estimation_in_free-form_2D_and_3D_geometries

  54. Galantucci, L.M., Lavecchia, F., Percoco, G.: Quantitative analysis of a chemical treatment to reduce roughness of parts fabricated using fused deposition modeling. CIRP Ann. - Manuf. Technol. 59, 247–250 (2010). https://doi.org/10.1016/j.cirp.2010.03.074

    Article  Google Scholar 

  55. Jin, Y., Wan, Y., Zhang, B., Liu, Z.: Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties. J. Mater. Process. Technol. 240, 233–239 (2017). https://doi.org/10.1016/j.jmatprotec.2016.10.003

    Article  Google Scholar 

  56. Boschetto, A., Bottini, L.: Roughness prediction in coupled operations of fused deposition modeling and barrel finishing. J. Mater. Process. Technol. 219, 181–192 (2015). https://doi.org/10.1016/j.jmatprotec.2014.12.021

    Article  Google Scholar 

  57. Thompson, A., Maskery, I., Leach, R.K.: X-ray computed tomography for additive manufacturing: a review. Int. J. Metrol. Qual. Eng. 8, 17 (2017)

    Article  Google Scholar 

  58. Ford, S., Despeisse, M., Viljakainen, A.: Extending product life through additive manufacturing: the sustainability implications. In: Global Cleaner Production and Consumption Conference (2015). https://doi.org/10.13140/rg.2.1.4561.9282

  59. Despeisse, M., Ford, S.: The role of additive manufacturing in improving resource efficiency and sustainability. In: Umeda, S., Nakano, M., Mizuyama, H., Hibino, H., Kiritsis, D., von Cieminski, G. (eds.) Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth, pp. 129–136. Springer (2015)

    Google Scholar 

  60. Sreenivasan, R., Bourell, D.L.: Sustainability study in selective laser sintering – an energy perspective. Minerals, Metals and Materials Society/AIME, 420 Commonwealth Dr., P. O. Box 430 Warrendale PA 15086 USA, 9 (2010)

    Google Scholar 

  61. Bourell, D.L., Leu, M., Rosen, D.: Roadmap for additive manufacturing-Identifying the future of freeform processing, The Univer, Austin, Texas (2009). http://wohlersassociates.com/roadmap2009A.pdf

  62. Ford, S., Despeisse, M., Viljakainen, A.: Extending product life through additive manufacturing: the sustainability implications. Glob. Clean. Prod. Consum. Conf., 1–4 (2015). https://doi.org/10.13140/rg.2.1.4561.9282

  63. Despeisse, M., Baumers, M., Brown, P., Charnley, F., Ford, S.J., Garmulewicz, A., Knowles, S., Minshall, T.H.W., Mortara, L., Reed-Tsochas, F.P., Rowley, J.: Unlocking value for a circular economy through 3D printing: a research agenda. Technol. Forecast. Soc. Change. 115, 75–84 (2017). https://doi.org/10.1016/j.techfore.2016.09.021

    Article  Google Scholar 

  64. Kerbrat, O., Le Bourhis, F., Mognol, P., Hascoët, J.-Y.: Environmental impact assessment studies in additive manufacturing. In: Muthu, S.S., Savalani, M.M. (eds.) Handbook of Sustainability in Additive Manufacturing, vol. 2, pp. 31–63. Springer, Singapore (2016)

    Google Scholar 

  65. Faludi, J., Iribarne, M., Bayley, C., Bhogal, S.: Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototyp. J. 21, 14–33 (2015). https://doi.org/10.1108/RPJ-07-2013-0067

    Article  Google Scholar 

  66. Verma, A., Rai, R., DART Lab: Energy efficient modeling and optimization of additive manufacturing processes, p. 12

    Google Scholar 

  67. Baumers, M., Tuck, C., Bourell, D.L., Sreenivasan, R., Hague, R.: Sustainability of additive manufacturing: measuring the energy consumption of the laser sintering process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225, 2228–2239 (2011). https://doi.org/10.1177/0954405411406044

    Article  Google Scholar 

  68. Meteyer, S., Xu, X., Perry, N., Zhao, Y.F.: Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia CIRP 15, 19–25 (2014). https://doi.org/10.1016/j.procir.2014.06.030

    Article  Google Scholar 

  69. Huang, Y., Leu, M.C., Mazumder, J., Donmez, A.: Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. Eng. 137, 014001–014001–014001–014010 (2015). https://doi.org/10.1115/1.4028725

    Article  Google Scholar 

  70. Thomas, D.S., Gilbert, S.W.: Costs and Cost Effectiveness of Additive Manufacturing, National Institute of Standards and Technology (2014)

    Google Scholar 

  71. Le Bourhis, F., Kerbrat, O., Dembinski, L., Hascoet, J.-Y., Mognol, P.: Predictive model for environmental assessment in additive manufacturing process. Procedia CIRP 15, 26–31 (2014). https://doi.org/10.1016/j.procir.2014.06.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi M. Galantucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galantucci, L.M., Guerra, M.G., Dassisti, M., Lavecchia, F. (2019). Additive Manufacturing: New Trends in the 4th Industrial Revolution. In: Monostori, L., Majstorovic, V.D., Hu, S.J., Djurdjanovic, D. (eds) Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing. AMP 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-18180-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18180-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18179-6

  • Online ISBN: 978-3-030-18180-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics