Skip to main content

On the Weak Maximum Principle for Degenerate Elliptic Operators

  • Chapter
  • First Online:
Trends in Control Theory and Partial Differential Equations

Part of the book series: Springer INdAM Series ((SINDAMS,volume 32))

  • 631 Accesses

Abstract

This paper provides an overview of some more or less recent results concerning the validity of the weak Maximum Principle for fully nonlinear degenerate elliptic equations. Special attention is devoted to the presentation of sufficient conditions relating the directions of degeneracy and the geometry of the possibly unbounded domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crandall, M.G., Ishii, H., Lions, P.-L.: Users guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. N.S. 27(1), 167 (1992)

    Google Scholar 

  2. Calabi, E.: An extension of E. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J. 25, 45–56 (1958)

    Article  MathSciNet  Google Scholar 

  3. Garofalo, N.: Private Communication (2017)

    Google Scholar 

  4. Mantegazza, C., Mascellani, G.: Uraltsev, Gennady on the distributional Hessian of the distance function. Pac. J. Math. 270(1), 151–166 (2014)

    Article  Google Scholar 

  5. Berestycki, H., Capuzzo Dolcetta, I., Porretta, A., Rossi, L.: Maximum principle and generalized principal eigenvalue for degenerate elliptic operators. J. Math. Pures Appl. 103(5, 9), 1276–1293 (2015)

    Article  MathSciNet  Google Scholar 

  6. Capuzzo-Dolcetta, I., Leoni, F., Vitolo, A.: The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains. Commun. Part. Differ. Equ. 30(10–12), 1863–1881 (2005)

    Article  MathSciNet  Google Scholar 

  7. Capuzzo Dolcetta, I., Vitolo, A.: The weak maximum principle for degenerate elliptic operators in unbounded domains. Int. Math. Res. Not. 2018(2), 412–431 (Advance Access Publication December 16) (2016)

    Google Scholar 

  8. Capuzzo Dolcetta, I., Vitolo, A.: in preparation

    Google Scholar 

  9. Birindelli, I., Camilli, F., Capuzzo Dolcetta, I.: On the approximation of the principal eigenvalue for a class of nonlinear elliptic operators. Commun. Math. Sci. 15(1), 55–75 (2017)

    Article  MathSciNet  Google Scholar 

  10. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Corrected reprint of the 1967 original. Springer, New York, x+261 pp. (1984)

    Book  Google Scholar 

  11. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  Google Scholar 

  12. Donsker, M.D., Varadhan, S.R.S.: On the principal eigenvalue of second-order elliptic differential operators. Comm. Pure Appl. Math. 29(6), 595–621 (1976)

    Article  MathSciNet  Google Scholar 

  13. Barta, J.: Sur la vibration fondamentale d’une membrane. C. R. Acad. Sci. Paris 204, (1937)

    Google Scholar 

  14. Venturino, M.: The first eigenvalue of linear elliptic operators in nonvariational form. Boll. Un. Mat. Ital. B 15(2, 5), 576–591 (1978) (Italian)

    Google Scholar 

  15. Lasry, J.-M.: Contrle stationnaire asymptotique. (French) Control theory, numerical methods and computer systems modelling (International Symposium, IRIA LABORIA, Rocquencourt, 1974), pp. 296–313. Lecture Notes in Economics and Mathematical Systems, vol. 107. Springer, Berlin (1975)

    Google Scholar 

  16. Lions, P.-L.: Optimal control and viscosity solutions. Recent Mathematical Methods in Dynamic Programming (Rome, 1984). Lecture Notes in Mathematics, vol. 1119, pp. 94–112. Springer, Berlin (1985)

    Google Scholar 

  17. Bensoussan, A., Nagai, H.: An ergodic control problem arising from the principal eigenfunction of an elliptic operator. J. Math. Soc. Jpn. 43(1), 49–65 (1991)

    Article  MathSciNet  Google Scholar 

  18. Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. Applications of Mathematics (New York), vol. 25, xvi+428 pp. Springer, New York (1993)

    Google Scholar 

  19. Birindelli, I., Demengel, F.: Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Commun. Pure Appl. Anal. 6(2), 335–366 (2007)

    Article  MathSciNet  Google Scholar 

  20. Harvey, R., Lawson Jr., B.: Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry. To appear in Surveys in Geometry. arXiv:1303.1117

  21. Cabré, X.: On the Alexandroff-Bakelman-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Comm. Pure Appl. Math. 48(5), 539–570 (1995)

    Article  MathSciNet  Google Scholar 

  22. Caffarelli, L., Li, Y., Nirenberg, L.: Some remarks on singular solutions of nonlinear elliptic equations III: viscosity solutions including parabolic operators. Comm. Pure Appl. Math. 66(1), 109–143 (2013)

    Article  MathSciNet  Google Scholar 

  23. Mannucci, P.: The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Commun. Pure Appl. Anal. 13(1), 119–133 (2014)

    Article  MathSciNet  Google Scholar 

  24. Babuska, I., Osborn, J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52(186), 275–297 (1989)

    Article  MathSciNet  Google Scholar 

  25. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1120 (2010)

    Article  MathSciNet  Google Scholar 

  26. Heuveline, V., Bertsch, C.: On multigrid methods for the eigenvalue computation of nonselfadjoint elliptic operators. East-West J. Numer. Math. 8(4), 275–297 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Kuo, H.J., Trudinger, N.S.: Discrete methods for fully nonlinear elliptic equations. SIAM J. Numer. Anal. 29(1), 123–135 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Italo Capuzzo Dolcetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capuzzo Dolcetta, I. (2019). On the Weak Maximum Principle for Degenerate Elliptic Operators. In: Alabau-Boussouira, F., Ancona, F., Porretta, A., Sinestrari, C. (eds) Trends in Control Theory and Partial Differential Equations. Springer INdAM Series, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-17949-6_5

Download citation

Publish with us

Policies and ethics