Skip to main content

Management of Agrochemical Residues in the Environment

  • Chapter
  • First Online:
Sustainable Agrochemistry

Abstract

This chapter deals with the more relevant strategies for the management of agrochemical residues in soil and water. Furthermore, the most advanced treatment technologies will be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • American Society for Testing and Methods (2018) Waste management standards. https://www.astm.org/Standards/waste-management-standards.html. Accessed Aug 2018

  • Baird C (2002) Química ambiental. Bookman, Porto Alegre

    Google Scholar 

  • Balmer ME, Goss K-U, Schwarzenbach RP (2000) Photolytic transformation of organic pollutants on soil surfaces—an experimental approach. Environ Sci Technol 34:1240–1245

    Article  CAS  Google Scholar 

  • Brazilian Agricultural Research Corporation. Embrapa (1997) Manual de métodos de análise de solo [Guidelines for soil analysis], 2nd edn. National Research Center for Soils, Rio de Janeiro

    Google Scholar 

  • Castillo MDP, Torstensson L, Stenström J (2008) Biobeds for environmental protection from pesticide use—a review. J Agric Food Chem 56:6206–6219

    Article  CAS  Google Scholar 

  • Clapp CE, Hayes MHB, Senesi N, Bloom PR, Jardine PM (eds) (2001) Humic substances and chemical contaminants. Soil Society of America, Madison

    Google Scholar 

  • Conte ED, Dal Magro T, Gebler L (2016) Boas práticas de manejo de solo, plantas daninhas e agricultura de precisão. EDUCS, Caxias do Sul

    Google Scholar 

  • de Roffignac L, Cattan P, Mailloux J, Herzog D, Bellec FL (2008) Efficiency of a bagasse substrate in a biological bed system for the degradation of glyphosate, malathion and lambda-cyhalothrin under tropical climate conditions. Pest Manag Sci 64:1303–1313

    PubMed  Google Scholar 

  • Diez MC, Tortella GR, Briceño G, Castillo MP, Díaz J, Palma G, Altamirano C, Calderón C, Rubilar O (2013) The influence of novel lignocellulosic residues in a biobed biopurification system on the degradation of pesticides applied in repeated high doses. Electron J Biotechnol. http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v16n6-17/1793. Accessed Nov 2018

  • Don H, Qiang Z, Lian J, Qu J (2017) Degradation of nitro-based pharmaceuticals by UV photolysis: kinetics and simultaneous reduction on halonitromethanes formation potential. Water Res 119:83–90

    Article  Google Scholar 

  • Eugris (2018) Further description. http://www.eugris.info/FurtherDescription.asp?e=26&Ca=2&Cy=0&T=In. Accessed Aug 2018

  • Fogg P, Boxall ABA, Walker A (2003) Degradation of pesticides in biobeds: the effect concentration and pesticide mixtures. J Agric Food Chem 51:5344–5349

    Article  CAS  Google Scholar 

  • Fogg P, Boxall ABA, Walker A, Jukes A (2004) Leaching pesticides from biobeds: effect of biobed depth and water loading. J Agric Food Chem 52:6217–6227

    Article  CAS  Google Scholar 

  • Gao W, Liang J, Pizzul L, Feng XM, Zhang K, Castillo MP (2015) Evaluation of spent mushroom substrate as substitute of peat in Chinese biobeds. Int Biodeterior Biodegratation 98:107–112

    Article  Google Scholar 

  • Gebler L, Pizzutti IR, Cardoso CD, Klauberg Filho O, Miquelluti DJ, Santos RSS (2015a) Biorreactors to organize the disposal of phytosanitary effluents of Brazilian apple production. Chem Eng Trans 43:343–348

    Google Scholar 

  • Gebler L, Pizzutti IR, Magro TD, Santos RSS, Cardoso CD, Klauberg Filho O (2015b) Sistema Biobed Brasil: Tecnologia para Disposição Final de Efluentes Contaminados com Agrotóxicos Originados na Produção de Frutas de Clima Temperado. Embrapa Uva e Vinho, Bento Gonçalves

    Google Scholar 

  • Hisaindee S, Meetani MA, Rauf MA (2013) Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. TrAC Trends Anal Chem 49:31–44

    Article  CAS  Google Scholar 

  • Holmsgaard PN, Dealtry S, Dunon V, Heuer H, Hansen LH, Springael D, Smalla K, Riber L, Sørensen SJ (2017) Response of the bacterial community in an on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season. Environ Pollut 229:854–862

    Article  CAS  Google Scholar 

  • International Union of Pure and Applied Chemistry (2018) IUPAC compendium of chemical terminology—the gold book. http://goldbook.iupac.org/index.html. Accessed Aug 2018

  • Karanasios E, Tsiropoulos NG, Karpouzas DG, Ehaliotis C (2010) Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in Southern Europe. J Agric Food Chem 58:9147–9156

    Article  CAS  Google Scholar 

  • Koumaki E, Mamais D, Noutsopoulos C, Nika M-C, Bletsou AA, Thomaidis NS, Eftaxias A, Stratogianni G (2015) Degradation of emerging contaminants from water under natural sunlight: the effect of season, pH, humic acids and nitrate and identification of photodegradation by-products. Chemosphere 138:675–681

    Article  CAS  Google Scholar 

  • Mackay D, Shiu W, Ma K (1997) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. CRC Press, Boca Ranton

    Book  Google Scholar 

  • Manahan SE (2000) Environmental chemistry. CRC Press, Boca Ranton

    Google Scholar 

  • Mirzaei A, Chen Z, Hghighat F, Yerushalmi L (2017) Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—a review. Chemosphere 174:665–688

    Article  CAS  Google Scholar 

  • Sniegowski K, Bers K, Van Goetem K, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011) Improvement of pesticide mineralization in on-farm biopurification system by bioaugmentation with pesticide-primed soil. FEMS Microbiol Ecol 76:64–73

    Article  CAS  Google Scholar 

  • Snoeyink VL, Jenkins D (1996) Química del água [Water chemistry]. Limusa, México City

    Google Scholar 

  • Spliid NH, Helweg A, Heinrichson K (2006) Leaching and degradation of 21 pesticides in a full-scale model biobed. Chemosphere 65:2223–2232

    Article  CAS  Google Scholar 

  • Torstensson L (2000) Experiences of biobeds in practical use in Sweden. Pestic Outlook 11:206–211

    Article  Google Scholar 

  • Torstensson L, Castillo MP (1997) Use of biobeds in Sweden to minimize environmental spillages from agricultural spray equipment. Pestic Outlook 8:24–27

    CAS  Google Scholar 

  • United Nations Environment Programme—UNEP (2018) Guidance on chemicals legislation: overview. https://www.unenvironment.org/zh-hans/node/14392. Accessed Nov 2018

  • University of the West of England (2013) Science for environment policy in-depth report: soil contamination: impacts on human health. Report produced for the European Commission DG Environment. http://ec.europa.eu/environment/integration/research/newsalert/pdf/IR5_en.pdf. Accessed Oct 2018

  • US-Environmental Protection Agency (2018a) Thermal treatment: ex situ. https://clu-in.org/techfocus/default.focus/sec/Thermal_Treatment%3A_Ex_Situ/cat/Overview/. Accessed Aug 2018

  • US-Environmental Protection Agency (2018b) https://www.epa.gov/hw-sw846/sw-846-compendium. Accessed Aug 2018

  • Vareli CS, Pizzutti IR, Gebler L, Cardoso CD, Gai DH, Fontana M (2018) Analytical method validation to evaluate dithiocarbamates degradation in biobeds in South of Brazil. Talanta 184:202–209

    Article  CAS  Google Scholar 

  • Vaz S Jr (2013) Química analítica ambiental [Environmental analytical chemistry]. Embrapa, Brasília

    Google Scholar 

  • Vaz Júnior S (2010) Estudo da sorção do antibiótico oxitetraciclina a solos e ácidos húmicos e avaliação dos mecanismos de interação envolvidos. [Study of the antibiotic oxytetracycline sorption to soils and humic acids and evaluation of the interaction mechanisms involved]. PhD thesis, University of São Paulo, São Carlos, Brazil. 2010. http://doi.org/10.11606/T.75.2010.tde-30062010-155624

  • Vischetti C, Monaci E, Cardinali A, Perucci P (2008) The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere 72:1739–1743

    Article  CAS  Google Scholar 

  • Weber OLS, Chitolina JC, Camargo AO, Alleoni LRF (2005) Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados [Structural and variable electrical charges of highly weathered tropical soils]. Rev Bras Cienc Solo 29:867–873

    Article  Google Scholar 

  • Wenneker M, Beltman WH, De Werd HAE, Van De Zande JC (2008) Identification and quantification of point sources of surface water contamination in fruit culture in the Netherlands. Aspects Appl Biol 84:369–375

    Google Scholar 

  • World Health Organization (2010) The WHO recommended classification of pesticides by hazard and guidelines to classification: 2009. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2017) Chemical mixtures in source water and drinking-water. World Health Organization, Geneva

    Google Scholar 

  • Yang L, Li M, Li W, Jiang Y, Qiang Z (2018) Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process. Chem Eng J 342:155–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sílvio Vaz Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaz, S., Gebler, L. (2019). Management of Agrochemical Residues in the Environment. In: Vaz Jr., S. (eds) Sustainable Agrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-17891-8_12

Download citation

Publish with us

Policies and ethics