Skip to main content

Crocus sativus L. (Iridaceae)

(Syns.: C. officinalis (L.) Honck.; C. orsinii Parl.; C. pendulus Stokes; C. setifolius Stokes)

  • Chapter
  • First Online:
Handbook of 200 Medicinal Plants

Abstract

Crocus sativus is a small, perennial stemless plant, mainly cultivated in Iran, Greece, Spain, India and France. Saffron consists of a small portion of the style and three long tubular stigmas of a rich orange color. Saffron is the most expensive spice by weight in the world. Saffron has a rich ancient history of use from the East (India, Persia, China, Arabia) to the West (Rome, Greece, Spain), in various forms. Cultivation and human use of saffron for medicinal purposes spans more than 3500 years, including its use against cancer and depression. Mesopotamians used it in religious celebrations and for health benefits, Phoenicians used it as dye, and Romans used it as dye, in perfumes, and in healthcare. It was considered diuretic, astringent, deobstruent, and emmenagogue, and used as cardiac stimulant, aphrodisiac, improving skin complexion, increasing brilliancy of eyes, and promoting childbirth. Razi, the great Persian physician, said ‘it is a diuretic and a stimulant of sexual desire, and is a digestive drug with astringent properties; it cleanses the stomach.’ Saffron is also antispasmodic, and is used in cases of amenorrhea, chlorosis, seminal debility, leucorrhea, dysmenorrhea, flatulent colic, spasmodic asthma and cough, rheumatism and neuralgic pain. In traditional Chinese medicine it has been used as an anodyne or tranquilizer, antipyretic and to improve circulation. Chemical analysis of saffron stigmas has shown the presence of more than 150 volatile, non-volatile and aroma yielding compounds, including safranal, zeaxanthin, lycopene, α- and β-carotenes and carotenoids; they also include fat, minerals, protein, crude fiber, and sugars, including starch, reducing sugars, pentosans, gums, pectin, and dextrins. Saffron extracts and crocins ameliorate experimentally-induced impairment of learning and memory processes in animals, and pretreatment with aqueous extract significantly attenuated cerebral ischemia-induced neurobehavioral and neurochemical changes in rats. Saffron , its hydroalcohol extract, and the petals treatment was effective in patients with mild to moderate depression, comparable to fluoxetine and imipramine, and also ameliorated some of the fluoxetine-induced sexual dysfunction in women, including arousal, lubrication, and pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullaev FI. Biological effects of saffron. BioFactors. 1993;4:83–6.

    CAS  PubMed  Google Scholar 

  2. Abdullaev FI. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med. 2008;247:20–5.

    Google Scholar 

  3. Abe K, Sugiura M, Yamaguchi S, et al. Saffron extract prevents acetaldehyde-induced inhibition of long-term potentiation in the rat dentate gyrus in vivo. Brain Res. 1999;851:287–9.

    CAS  PubMed  Google Scholar 

  4. Agha-Hosseini M, Kashani L, Aleyaseen A, et al. Crocus sativus L. (saffron) in the treatment of premenstrual syndrome: a double-blind, randomised and placebo-controlled trial. BJOG. 2008;115:515–9.

    Google Scholar 

  5. Ahmad AS, Ansari MA, Ahmad M, et al. Neuroprotection by crocetin in a hemiparkinsonian rat model. Pharmacol Biochem Behav. 2005;81:805–13.

    CAS  PubMed  Google Scholar 

  6. Akhondzadeh Basti A, Moshiri E, Noorbala AA, et al. Comparison of petal of Crocus sativus L. and fluoxetine in the treatment of depressed outpatients: a pilot double-blind randomized trial. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:439–42.

    Google Scholar 

  7. Akhondzadeh S, Tahmacebi-Pour N, Noorbala AA, et al. Crocus sativus L. in the treatment of mild to moderate depression: a double-blind, randomized and placebo-controlled trial. Phytother Res. 2005;19:148–51.

    Google Scholar 

  8. Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol. 2014;64:65–80.

    CAS  PubMed  Google Scholar 

  9. Al-Rehaily AJ, Alhowiriny TA, El-Tahir KE, Al-Taweel AM, Perveen S. Molecular mechanisms that underlie the sexual stimulant actions of Avicennia marina (Forssk.) Vierh. and Crocus sativus L. Pak J Pharm Sci. 2015;28:49–58.

    Google Scholar 

  10. Amin B, Abnous K, Motamedshariaty V, Hosseinzadeh H. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats. An Acad Bras Cienc. 2014;86:1821–32.

    Google Scholar 

  11. Amin B, Feriz HM, Hariri AT, Meybodi NT, Hosseinzadeh H. Protective effects of the aqueous extract of Crocus sativus against ethylene glycol-induced nephrolithiasis in rats. EXCLI J. 2015;14:411–22.

    PubMed  PubMed Central  Google Scholar 

  12. Amin B, Malekzadeh M, Heidari MR, Hosseinzadeh H. Effect of Crocus sativus extracts and its active constituent safranal on the harmaline-induced tremor in mice. Iran J Basic Med Sci. 2015;18:449–58.

    PubMed  PubMed Central  Google Scholar 

  13. Asadi MH, Zafari F, Sarveazad A, et al. Saffron improves epididymal sperm parameters in rats exposed to cadmium. Nephrourol Mon. 2013;6:e12125.

    PubMed  PubMed Central  Google Scholar 

  14. Asai A, Nakano T, Takahashi M, et al. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem. 2005;53:7302–6.

    CAS  PubMed  Google Scholar 

  15. Assimopoulou AN, Sinakos Z, Papageorgiou VP. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res. 2005;19:997–1000.

    Google Scholar 

  16. Ayatollahi H, Javan AO, Khajedaluee M, Shahroodian M, Hosseinzadeh H. Effect of Crocus sativus L. (saffron) on coagulation and anticoagulation systems in healthy volunteers. Phytother Res. 2014;28:539–43.

    Google Scholar 

  17. Bahmani M, Rafieian M, Baradaran A, Rafieian S, Rafieian-Kopaei M. Nephrotoxicity and hepatotoxicity evaluation of Crocus sativus stigmas in neonates of nursing mice. J Nephropathol. 2014;3:81–5.

    PubMed  PubMed Central  Google Scholar 

  18. Bandegi AR, Rashidy-Pour A, Vafaei AA, Ghadrdoost B. Protective effects of Crocus sativus L. extract and crocin against chronic-stress induced oxidative damage of brain, liver and kidneys in rats. Adv Pharm Bull. 2014;4 Suppl 2:493–9.

    Google Scholar 

  19. Bathaie SZ, Miri H, Mohagheghi MA, et al. Saffron aqueous extract inhibits the chemically-induced gastric cancer progression in the Wistar albino rat. Iran J Basic Med Sci. 2013;16:27–38.

    PubMed  PubMed Central  Google Scholar 

  20. Bathaie SZ, Mousavi SZ. New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr. 2010;50:761–86.

    CAS  PubMed  Google Scholar 

  21. Boskabady MH, Aslani MR. Relaxant effect of Crocus sativus (saffron) on guinea-pig tracheal chains and its possible mechanisms. J Pharm Pharmacol. 2006;58:1385–90.

    CAS  PubMed  Google Scholar 

  22. Boskabady MH, Byrami G, Feizpour A. The effect of safranal, a constituent of Crocus sativus (saffron), on tracheal responsiveness, serum levels of cytokines, total NO and nitrite in sensitized guinea pigs. Pharmacol Rep. 2014;66:56–61.

    CAS  PubMed  Google Scholar 

  23. Broadhead GK, Chang A, Grigg J, McCluskey P. Efficacy and safety of saffron supplementation: current clinical findings. Crit Rev Food Sci Nutr. 2016;56:2767–76.

    CAS  PubMed  Google Scholar 

  24. Bukhari SI, Pattnaik B, Rayees S, Kaul S, Dhar MK. Safranal of Crocus sativus L. inhibits inducible nitric oxide synthase and attenuates asthma in a mouse model of asthma. Phytother Res. 2015;29:617–27.

    Google Scholar 

  25. Carmona M, Zalacain A, Sánchez AM, et al. Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC-ESI-MS. J Agric Food Chem. 2006;54:973–9.

    Google Scholar 

  26. D’Alessandro AM, Mancini A, Lizzi AR, et al. Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutr Cancer. 2013;65:930–42.

    PubMed  Google Scholar 

  27. Das I, Chakrabarty RN, Das S. Saffron can prevent chemically induced skin carcinogenesis in Swiss albino mice. Asian Pac J Cancer Prev. 2004;5:70–6.

    PubMed  Google Scholar 

  28. Ding Q, Zhong H, Qi Y, et al. Antiarthritic effects of crocin in interleukin-1β-treated articular chondrocytes and cartilage in a rabbit osteoarthritic model. Inflamm Res. 2013;62:17–25.

    CAS  PubMed  Google Scholar 

  29. Dovrtělová G, Nosková K, Juřica J, Turjap M, Zendulka O. Can bioactive compounds of Crocus sativus L. influence the metabolic activity of selected CYP enzymes in the rat? Physiol Res. 2015;64 Suppl 4: S453–8.

    Google Scholar 

  30. el Daly ES. Protective effect of cysteine and vitamin E, Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in rats. J Pharm Belg. 1998;53:87–93; discussion 93–5.

    Google Scholar 

  31. Escribano J, Alonso GL, Coca-Prados M, Fernandez JA. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett. 1996;100:23–30.

    Google Scholar 

  32. Farokhnia M, Shafiee Sabet M, Iranpour N, et al. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial. Hum Psychopharmacol. 2014;29:351–9.

    Google Scholar 

  33. Fadai F, Mousavi B, Ashtari Z, et al. Saffron aqueous extract prevents metabolic syndrome in patients with schizophrenia on olanzapine treatment: a randomized triple blind placebo controlled study. Pharmacopsychiatry. 2014;47:156–61.

    CAS  PubMed  Google Scholar 

  34. Festuccia C, Mancini A, Gravina GL, et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int. 2014;2014:135048.

    PubMed  PubMed Central  Google Scholar 

  35. García-Olmo DC, Riese HH, Escribano J, et al. Effects of long-term treatment of colon adenocarcinoma with crocin, a carotenoid from saffron (Crocus sativus L.): an experimental study in the rat. Nutr Cancer. 1999;35:120–6.

    Google Scholar 

  36. Georgiadou G, Grivas V, Tarantilis PA, Pitsikas N. Crocins, the active constituents of Crocus sativus L., counteracted ketamine-induced behavioural deficits in rats. Psychopharmacology (Berl). 2014;231:717–26.

    Google Scholar 

  37. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol. 2011;667:222–9.

    CAS  PubMed  Google Scholar 

  38. Ghaffari Sh, Hatami H, Dehghan G. Saffron ethanolic extract attenuates oxidative stress, spatial learning, and memory impairments induced by local injection of ethidium bromide. Res Pharm Sci. 2015;10:222–32.

    PubMed  PubMed Central  Google Scholar 

  39. Ghasemi T, Abnous K, Vahdati F, et al. Antidepressant effect of Crocus sativus aqueous extract and its effect on CREB, BDNF, and VGF Transcript and protein levels in rat hippocampus. Drug Res (Stuttg). 2015;65:337–43.

    CAS  Google Scholar 

  40. Gholamnezhad Z, Koushyar H, Byrami G, Boskabady MH. The extract of Crocus sativus and its constituent safranal, affect serum levels of endothelin and total protein in sensitized guinea pigs. Iran J Basic Med Sci. 2013;16:1022–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gohari AR, Saeidnia S, Mahmoodabadi MK. An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn Rev. 2013;7:61–6.

    PubMed  PubMed Central  Google Scholar 

  42. Hausenblas HA, Saha D, Dubyak PJ, Anton SD. Saffron (Crocus sativus L.) and major depressive disorder: a meta-analysis of randomized clinical trials. J Integr Med. 2013;11:377–83.

    Google Scholar 

  43. Hemmati M, Asghari S, Zohoori E, Karamian M. Hypoglycemic effects of three Iranian edible plants; jujube, barberry and saffron: correlation with serum adiponectin level. Pak J Pharm Sci. 2015;28:2095–9.

    CAS  PubMed  Google Scholar 

  44. Hemshekhar M, Sebastin Santhosh M, Sunitha K, et al. A dietary colorant crocin mitigates arthritis and associated secondary complications by modulating cartilage deteriorating enzymes, inflammatory mediators and antioxidant status. Biochimie. 2012;94:2723–33.

    CAS  PubMed  Google Scholar 

  45. Hosseinzadeh H, Ghenaati J. Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia. 2006;77:446–8.

    PubMed  Google Scholar 

  46. Hosseinzadeh H, Sadeghi Shakib S, Khadem Sameni A, Taghiabadi E. Acute and subacute toxicity of safranal, a constituent of saffron, in mice and rats. Iran J Pharm Res. 2013;12:93–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hosseinzadeh H, Sadeghnia HR, Rahimi A. Effect of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic acid treatment in anesthetized rats. Planta Med. 2008;74:1441–5.

    CAS  PubMed  Google Scholar 

  48. Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci. 2005;8:387–93.

    Google Scholar 

  49. Hosseinzadeh H, Sadeghnia HR. Protective effect of safranal on pentylenetetrazol-induced seizures in the rat: involvement of GABAergic and opioids systems. Phytomedicine. 2007;14:256–62.

    CAS  PubMed  Google Scholar 

  50. Hosseinzadeh H, Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia. 2005;76:722–4.

    CAS  PubMed  Google Scholar 

  51. Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol. 2002;2:7.

    Google Scholar 

  52. Hosseinzadeh H, Ziaee T, Sadeghi A. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine. 2008;15:491–5.

    CAS  PubMed  Google Scholar 

  53. Imenshahidi M, Razavi BM, Faal A, et al. Effects of chronic crocin treatment on desoxycorticosterone acetate (doca)-salt hypertensive rats. Iran J Basic Med Sci. 2014;17:9–13.

    PubMed  PubMed Central  Google Scholar 

  54. Imenshahidi M, Razavi BM, Faal A, et al. The effect of chronic administration of saffron (Crocus sativus) stigma aqueous extract on systolic blood pressure in rats. Jundishapur J Nat Pharm Prod. 2013;8:175–9.

    PubMed  PubMed Central  Google Scholar 

  55. Javadi B, Sahebkar A, Emami SA. A survey on saffron in major Islamic traditional medicine books. Iran J Basic Med Sci. 2013;16:1–11.

    PubMed  PubMed Central  Google Scholar 

  56. Jorjani SE. Zakhireh Kharazmshahi (Treasure of Kharazmshahi). In: Saeedi Sirjani AA, editors. Photo print of the manuscript dated 1206 A.D Tehran: The lranian Culture Foundation. 1976, p. 664.

    Google Scholar 

  57. Kang C, Lee H, Jung ES, et al. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem. 2012;135:2350–8.

    Google Scholar 

  58. Karami M, Bathaie SZ, Tiraihi T, et al. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP). Phytomedicine. 2013;21:62–7.

    CAS  PubMed  Google Scholar 

  59. Kashani L, Raisi F, Saroukhani S, et al. Saffron for treatment of fluoxetine-induced sexual dysfunction in women: randomized double-blind placebo-controlled study. Hum Psychopharmacol. 2013;28:54–60.

    PubMed  Google Scholar 

  60. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, M Tsatsakis A. The effects of Crocus sativus (saffron) and its constituents on nervous system: a review. Avicenna J Phytomed. 2015;5:376–91.

    Google Scholar 

  61. Kianbakht S, Ghazavi A. Immunomodulatory effects of saffron: a randomized double-blind placebo-controlled clinical trial. Phytother Res. 2011;25:1801–5.

    CAS  PubMed  Google Scholar 

  62. Kianbakht S. Systematic review of pharmacological properties of saffron and active ingredients of it. Med Plants. 2008;28:1–23.

    Google Scholar 

  63. Kim SH, Lee JM, Kim SC, Park CB, Lee PC. Proposed cytotoxic mechanisms of the saffron carotenoids crocin and crocetin on cancer cell lines. Biochem Cell Biol. 2014;92:105–11.

    CAS  PubMed  Google Scholar 

  64. Kubo I, Kinst-Hori I. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. J Agric Food Chem. 1999;47:4121–5.

    CAS  PubMed  Google Scholar 

  65. Li CY, Wu TS. Constituents of the stigmas of Crocus sativus and their tyrosinase inhibitory activity. J Nat Prod. 2002;65:1452–6.

    CAS  PubMed  Google Scholar 

  66. Lićon C, Carmona M, Llorens S, Berruga MI, Alonso GL. Potential healthy effects of saffron spice (Crocus sativus L. stigmas) consumption. Func Plant Sci Biotech. 2010;4(Special Issue 2):64–73.

    Google Scholar 

  67. Linardaki ZI, Orkoula MG, Kokkosis AG, Lamari FN, Margarity M. Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem Toxicol. 2013;52:163–70.

    Google Scholar 

  68. Mahmoudabady M, Neamati A, Vosooghi S, Aghababa H. Hydroalcoholic extract of Crocus sativus effects on bronchial inflammatory cells in ovalbumin sensitized rats. Avicenna J Phytomed. 2013;3:356–63.

    PubMed  PubMed Central  Google Scholar 

  69. Manoharan S, Wani SA, Vasudevan K, et al. Saffron reduction of 7,12-dimethylbenz[a] anthracene-induced hamster buccal pouch carcinogenesis. Asian Pac J Cancer Prev. 2013;14:951–7.

    PubMed  Google Scholar 

  70. Marangoni D, Falsini B, Piccardi M, et al. Functional effect of saffron supplementation and risk genotypes in early age-related macular degeneration: a preliminary report. J Transl Med. 2013;11:228.

    PubMed  PubMed Central  Google Scholar 

  71. Mehdizadeh R, Parizadeh MR, Khooei AR, Mehri S, Hosseinzadeh H. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci. 2013;16:56–63.

    PubMed  PubMed Central  Google Scholar 

  72. Melnyk JP, Wang S, Marcone MF. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res Int. 2010;43:1981–9.

    CAS  Google Scholar 

  73. Moallem SA, Afshar M, Etemad L, Razavi BM, Hosseinzadeh H. Evaluation of teratogenic effects of crocin and safranal, active ingredients of saffron, in mice. Toxicol Ind Health. 2016;32:285–91.

    CAS  PubMed  Google Scholar 

  74. Modaghegh MH, Shahabian M, Esmaeili HA, et al. Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine. 2008;15:1032–7.

    PubMed  Google Scholar 

  75. Mohammadzadeh-Moghadam H, Nazari SM, Shamsa A, et al. Effects of a topical saffron (Crocus sativus L.) gel on erectile dysfunction in diabetics: a randomized, parallel-group, double-blind, placebo-controlled trial. J Evid Based Complementary Altern Med. 2015;20:283–6.

    CAS  PubMed  Google Scholar 

  76. Mokhtari-Zaer A, Khazdair MR, Boskabady MH. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms. Avicenna J Phytomed. 2015;5:365–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mollazadeh H, Emami SA, Hosseinzadeh H. Razi’s Al-Hawi and saffron (Crocus sativus): a review. Iran J Basic Med Sci. 2015;18:1153–66.

    PubMed  PubMed Central  Google Scholar 

  78. Moshiri E, Basti AA, Noorbala AA, et al. Crocus sativus L. (petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomedicine. 2006;13:607–11.

    Google Scholar 

  79. Moshiri M, Vahabzadeh M, Hosseinzadeh H. Clinical applications of saffron (Crocus sativus) and its constituents: a review. Drug Res (Stuttg). 2015;65:287–95.

    CAS  Google Scholar 

  80. Mousavi B, Bathaie SZ, Fadai F, et al. Safety evaluation of saffron stigma (Crocus sativus L.) aqueous extract and crocin in patients with schizophrenia. Avicenna J Phytomed. 2015;5:413–9.

    Google Scholar 

  81. Naghibi SM, Hosseini M, Khani F, et al. Effect of aqueous extract of Crocus sativus L. on morphine-induced memory impairment. Adv Pharmacol Sci. 2012;2012:494367.

    Google Scholar 

  82. Naghizadeh B, Mansouri MT, Ghorbanzadeh B, Farbood Y, Sarkaki A. Protective effects of oral crocin against intracerebroventricular streptozotocin-induced spatial memory deficit and oxidative stress in rats. Phytomedicine. 2013;20:537–42.

    CAS  PubMed  Google Scholar 

  83. Nair SC, Pannikar B, Panikkar KR. Antitumour activity of saffron (Crocus sativus). Cancer Lett. 1991;57:109–14.

    CAS  PubMed  Google Scholar 

  84. Nair SC, Salomi MJ, Panikkar B, Panikkar KR. Modulatory effects of Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in mice. J Ethnopharmacol. 1991;31:75–83.

    CAS  PubMed  Google Scholar 

  85. Nemati H, Boskabady MH, Ahmadzadef, Vostakolaei HA. Stimulatory effect of Crocus sativus (saffron) on beta2-adrenoceptors of guinea pig tracheal chains. Phytomedicine. 2008;15:1038–45.

    Google Scholar 

  86. Noorbala AA, Akhondzadeh S, Tahmacebi-Pour N, Jamshidi AH. Hydroalcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression: a double-blind, randomized pilot trial. J Ethnopharmacol. 2005;97:281–4.

    Google Scholar 

  87. Ochiai T, Shimeno H, Mishima K, et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta. 2007;1770:578–84.

    CAS  PubMed  Google Scholar 

  88. Omidi A, Riahinia N, Montazer Torbati MB, Behdani MA. Hepatoprotective effect of Crocus sativus (saffron) petals extract against acetaminophen toxicity in male Wistar rats. Avicenna J Phytomed. 2014;4:330–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Papandreou MA, Kanakis CD, Polissiou MG, et al. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem. 2006;54:8762–8.

    CAS  PubMed  Google Scholar 

  90. Pitsikas N, Boultadakis A, Georgiadou G, et al. Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety. Phytomedicine. 2008;15:1135–9.

    Google Scholar 

  91. Pitsikas N, Sakellaridis N. Crocus sativus L. extracts antagonize memory impairments in different behavioural tasks in the rat. Behav Brain Res. 173:112–5.

    Google Scholar 

  92. Pitsikas N, Zisopoulou S, Tarantilis PA, et al. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats’ memory. Behav Brain Res. 2007;183:141–6.

    Google Scholar 

  93. Poma A, Fontecchio G, Carlucci G, Chichiriccò G. Anti-inflammatory properties of drugs from saffron crocus. Anti-inflamm Antiallergy Agents Med Chem. 2012;11:37–51.

    CAS  Google Scholar 

  94. Premkumar K, Abraham SK, Santhiya ST, Ramesh A. Inhibitory effects of aqueous crude extract of saffron (Crocus sativus L.) on chemical-induced genotoxicity in mice. Asia Pac J Clin Nutr. 2003;12:474–6.

    Google Scholar 

  95. Premkumar K, Thirunavukkarasu C, Abraham SK, et al. Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by antitumor agents in mice. Hum Exp Toxicol. 2006;25:79–84.

    Google Scholar 

  96. Purushothuman S, Nandasena C, Peoples CL, et al. Saffron pretreatment offers neuroprotection to nigral and retinal dopaminergic cells of MPTP-treated mice. J Parkinsons Dis. 2013;3:77–83.

    CAS  PubMed  Google Scholar 

  97. Rajaei Z, Hadjzadeh MA, Nemati H, et al. Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food. 2013;16:206–10.

    CAS  PubMed  Google Scholar 

  98. Razavi M, Hosseinzadeh H, Abnous K, Motamedshariaty VS, Imenshahidi M. Crocin restores hypotensive effect of subchronic administration of diazinon in rats. Iran J Basic Med Sci. 2013;16:64–72.

    PubMed  PubMed Central  Google Scholar 

  99. Razi MZ. Al-Hawi fi’l-Tibb (Comprehensive Book of Medicine). In: Khan A, editor. Hyderabad: Osmania Oriental Publications Bureau; 1968, vol. 20. p. 548–53.

    Google Scholar 

  100. Rodríguez-Neira L, Lage-Yusty MA, López-Hernández J. Influence of culinary processing time on saffron’s bioactive compounds (Crocus sativus L.). Plant Foods Hum Nutr. 2014;69:291–6.

    Google Scholar 

  101. Sadeghnia HR, Cortez MA, Liu D, et al. Antiabsence effects of safranal in acute experimental seizure models: EEG and autoradiography. J Pharm Pharm Sci. 2008;11:1–14.

    CAS  PubMed  Google Scholar 

  102. Saha JC, Savini EC, Kasinathan S. Ecbolic properties of Indian medicinal plants. I. Indian J Med Sci. 1961;49:130.

    CAS  Google Scholar 

  103. Saleem S, Ahmad M, Ahmad AS, et al. Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food. 2006;9:246–53.

    PubMed  Google Scholar 

  104. Salomi MJ, Nair SC, Panikkar KR. Inhibitory effects of Nigella sativa and saffron (Crocus sativus) on chemical carcinogenesis in mice. Nutr Cancer. 1991;16:67–72.

    CAS  PubMed  Google Scholar 

  105. Samarghandian S, Borji A, Farahmand SK, Afshari R, Davoodi S. Crocus sativus L. (saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation. Biomed Res Int. 2013;417928.

    Google Scholar 

  106. Samarghandian S, Borji A. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Res. 2014;6:99–107.

    Google Scholar 

  107. Samarghandian S, Azimi-Nezhad M, Samini F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. Biomed Res Int. 2014;2014:920857.

    PubMed  PubMed Central  Google Scholar 

  108. Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr. 2007;157:315–9.

    PubMed  Google Scholar 

  109. Shahmansouri N, Farokhnia M, Abbasi SH, et al. A randomized, double-blind, clinical trial comparing the efficacy and safety of Crocus sativus L. with fluoxetine for improving mild to moderate depression in post percutaneous coronary intervention patients. J Affect Disord. 2014;155:216–22.

    Google Scholar 

  110. Shariatifar N, Shoeibi S, Sani MJ, et al. Study on diuretic activity of saffron (stigma of Crocus sativus L.) aqueous extract in rat. J Adv Pharm Technol Res. 2014;5:17–20.

    Google Scholar 

  111. Tung NH, Shoyama Y. New minor glycoside components from saffron. J Nat Med. 2013;67:672–6.

    PubMed  Google Scholar 

  112. Umigai N, Murakami K, Ulit MV, et al. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine. 2011;18:575–8.

    CAS  PubMed  Google Scholar 

  113. Vakili A, Einali MR, Bandegi AR. Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23:106–13.

    PubMed  Google Scholar 

  114. Vosooghi S, Mahmoudabady M, Neamati A, Aghababa H. Preventive effects of hydroalcoholic extract of saffron on hematological parameters of experimental asthmatic rats. Avicenna J Phytomed. 2013;3:279–87.

    PubMed  PubMed Central  Google Scholar 

  115. Xu GL, Yu SQ, Gong ZN, Zhang SQ. Study of the effect of crocin on rat experimental hyperlipemia and the underlying mechanisms. Zhongguo Zhong Yao Za Zhi. 2005;30:369–72 (Chinese).

    Google Scholar 

  116. Zhang Y, Shoyama Y, Sugiura M, Saito H. Effects of Crocus sativus L. on the ethanol-induced impairment of passive avoidance performances in mice. Biol Pharm Bull. 1994;17:217–21.

    Google Scholar 

  117. Zheng YQ, Liu JX, Wang JN, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res. 2007;1138:86–94.

    CAS  PubMed  Google Scholar 

  118. Ziaee T, Razavi BM, Hosseinzadeh H. Saffron reduced toxic effects of its constituent, safranal, in acute and subacute toxicities in rats. Jundishapur J Nat Pharm Prod. 2014;9:3–8.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Akbar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akbar, S. (2020). Crocus sativus L. (Iridaceae). In: Handbook of 200 Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-16807-0_78

Download citation

Publish with us

Policies and ethics